首页> 外文期刊>Future generation computer systems >Fast and peer-to-peer vital signal learning system for cloud-based healthcare
【24h】

Fast and peer-to-peer vital signal learning system for cloud-based healthcare

机译:基于云的医疗保健的快速对等生命信号学习系统

获取原文
获取原文并翻译 | 示例

摘要

Wearable devices in the Internet of Things (IoT) make home-based personal healthcare systems popular and affordable. With an increasing number of patients, such healthcare systems are challenged to store and process enormous volumes of data. Some medical institutions employ Cloud services to meet requirements of analyzing big data without considering sharing their own knowledge which could increase diagnostic accuracy. In order to obtain such collaborative healthcare community in the Cloud environment, we propose a peer-to-peer (p2p) learning system which is fast, robust and learning-efficient. Our proposed system continuously collects vital biosignals from wearable devices of users (e.g., chronic patients living alone at home) and analyzes the biosignals in real-time with Extreme Learning Machine (ELM). The traditional centralized learning models suffer in having huge communication costs to share massive amounts of personal vital biosignal data among the institutions for the training purpose. Our proposed p2p learning model can overcome this limitation by allowing every institution to maintain its own raw data while also being updated by other institutions’ shared knowledge a.k.a semi-model which is lightweight output during the training process, as well as being smaller than raw data. The extensive experimental analysis demonstrates that our proposed p2p learning model is efficient in learning and sharing for patient diagnosis. We also show the potential impact under different network topologies, network sizes and the number of learning peers.
机译:物联网(IoT)中的可穿戴设备使基于家庭的个人医疗保健系统变得流行且负担得起。随着患者数量的增加,这种医疗系统面临着存储和处理大量数据的挑战。一些医疗机构采用云服务来满足分析大数据的要求,而无需考虑共享自己的知识,这可以提高诊断准确性。为了在云环境中获得这样的协作式医疗保健社区,我们提出了一种快速,健壮和高效学习的对等(p2p)学习系统。我们提出的系统不断从用户的可穿戴设备(例如,独自在家中的慢性患者)中收集重要的生物信号,并使用极限学习机(ELM)实时分析生物信号。传统的集中式学习模型遭受巨大的通信成本,以在培训机构之间共享大量的个人重要生物信号数据。我们提出的p2p学习模型可以克服这一局限性,它允许每个机构维护自己的原始数据,同时还可以通过其他机构的共享知识(即半模型)进行更新,该模型在训练过程中输出的结果是轻量级的,并且比原始数据小。广泛的实验分析表明,我们提出的p2p学习模型可以有效地学习和共享患者诊断信息。我们还展示了在不同网络拓扑,网络规模和学习对等体数量下的潜在影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号