首页> 外文期刊>Future generation computer systems >A collaborative filtering recommendation method based on discrete quantum-inspired shuffled frog leaping algorithms in social networks
【24h】

A collaborative filtering recommendation method based on discrete quantum-inspired shuffled frog leaping algorithms in social networks

机译:社交网络中基于离散量子启发式洗牌蛙跳算法的协同过滤推荐方法

获取原文
获取原文并翻译 | 示例

摘要

In social network recommendation systems, the rating score prediction accuracy of the collaborative filtering (CF) method depends on both the extraction of the nearest neighbors and the calculation of user/project similarity. Based on a similar principle to user/project behavior, this paper uses the maximum intersection method to extract the optimal neighbor candidate set, and presents a weighted adjusted cosine similarity method to compute user/project similarity. Furthermore, to optimize the weights of the method, a novel optimization method called the discrete quantum-inspired shuffled frog leaping (DQSFL) algorithm is proposed, which is based on the shuffled frog leaping algorithm and quantum information theory. The DQSFL algorithm uses quantum movement equations to search for the optimal location according to the co-evolution of the quantum frog colony. The experiments demonstrate that the CF recommendation method based on DQSFL can effectively solve the rating data sparseness problem in the similarity computation process to improve the accuracy of the rating score prediction, and provide a better recommended result than traditional CF algorithms.
机译:在社交网络推荐系统中,协作过滤(CF)方法的评分得分预测准确性既取决于最近邻居的提取,也取决于用户/项目相似度的计算。基于与用户/项目行为相似的原理,本文采用最大交集法提取最佳邻居候选集,并提出了一种加权调整余弦相似度方法来计算用户/项目相似度。此外,为了优化该方法的权重,提出了一种新的优化方法,即基于离散蛙跳算法和量子信息论的离散量子启发式随机蛙跳(DQSFL)算法。 DQSFL算法使用量子运动方程根据量子青蛙菌落的共同进化来寻找最佳位置。实验表明,基于DQSFL的CF推荐方法可以有效解决相似度计算过程中的评分数据稀疏问题,提高了评分得分预测的准确性,并提供了比传统CF算法更好的推荐结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号