首页> 外文期刊>Future generation computer systems >A novel fuzzy similarity measure and prevalence estimation approach for similarity profiled temporal association pattern mining
【24h】

A novel fuzzy similarity measure and prevalence estimation approach for similarity profiled temporal association pattern mining

机译:相似度时间关联模式挖掘的一种新的模糊相似度测度和流行度估计方法

获取原文
获取原文并翻译 | 示例

摘要

Data generated from Sensors, IoT environment and many real time applications is mainly spatial, temporal, or spatio-temporal. Some of them include data generated from geospatial, geographical, medical, weather, finance and environmental applications. Such data objects changes over time. Conventional knowledge discovery techniques available do not address the need for analyzing such complex datasets and hence data analysis has become increasingly complex and challenging. Soft computing principles such as fuzzy logic, evolutionary and nature inspired computations may be applied to analyze dynamically varying data. Analyzing temporal trends of association patterns requires handling the temporal data, as prevalence values of temporal patterns are implicitly vectors. Finding Prevalence values of temporal association patterns and validating them for similarity using conventional approach increases the computational complexity. This makes it challenging as the conventional data mining algorithms do not address this need. In this research, we propose a novel approach for estimation of temporal association pattern prevalence values and a novel temporal fuzzy similarity measure which holds monotonicity to find similarity between any two temporal patterns. Experiments are performed considering naive, sequential, spamine and proposed approach. The results obtained show the proposed approach is promising and reduces computational complexity in terms of computing true prevalence and optimizing execution times.
机译:从传感器,物联网环境和许多实时应用程序生成的数据主要是空间,时间或时空的。其中一些包括从地理空间,地理,医学,天气,金融和环境应用程序生成的数据。这些数据对象随时间变化。可用的常规知识发现技术不能满足分析此类复杂数据集的需求,因此数据分析已变得越来越复杂和具有挑战性。诸如模糊逻辑,进化论和自然启发式计算之类的软计算原理可以应用于分析动态变化的数据。分析关联模式的时间趋势需要处理时间数据,因为时间模式的流行度值是隐式矢量。使用常规方法查找时间关联模式的流行度值并为相似性对其进行验证会增加计算复杂性。由于传统的数据挖掘算法无法满足这一需求,因此这具有挑战性。在这项研究中,我们提出了一种用于估计时间关联模式流行度值的新方法,以及一种新颖的时间模糊相似性度量,该度量具有单调性以查找任意两个时间模式之间的相似性。进行实验时要考虑天真,顺序,spamine和建议的方法。获得的结果表明,该方法是有前途的,并且在计算真实患病率和优化执行时间方面降低了计算复杂性。

著录项

  • 来源
    《Future generation computer systems》 |2018年第6期|582-595|共14页
  • 作者单位

    Department of Information Technology, VNR Vignana Jyothi Institute of Engineering and Technology;

    Software Engineering Dept, Faculty of Computer and Information Technology, Jordan University of Science and Technology;

    Professor (Retd), Department of Computer Science and Engineering, University College of Engineering, Osmania University,Department of Computer Science and Engineering, Acharya Institute of Technology;

    Department of Computer Science and Engineering, Vaagdevi College of Engineering;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Prevalence value; Spatial; Temporal; Fuzzy dissimilarity; Association pattern;

    机译:患病率;空间;时间;模糊不相似;关联模式;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号