首页> 外文期刊>Future generation computer systems >Scalable parallel simulation of dynamical processes on large stochastic Kronecker graphs
【24h】

Scalable parallel simulation of dynamical processes on large stochastic Kronecker graphs

机译:大随机Kronecker图上动力学过程的可扩展并行仿真

获取原文
获取原文并翻译 | 示例

摘要

Complex networks are widely recognized today as a unified framework to model the dynamical processes in socio-technical systems at the level of interacting elements. A stochastic Kronecker graph (SKG) is a network generative model that allows reproducing real-world networks while keeping their important topological properties. When sizes of SKGs reach dozens of millions of nodes, there is a need to apply parallel computations to simulate processes on networks stored in a distributed manner. In general, parallel simulation of a dynamical process on a complex network implies all-to-all communication between subnetworks at each iteration. In this paper, we study the efficiency of different SKG partitioning algorithms and different data interchange algorithms for dynamical process simulation on large SKGs. We compare the theoretical efficiency given by parallel performance models with experimental results for different communication patterns. An experimental part of the study was carried out for sparse SKGs with a size up to one billion nodes using Lomonosov supercomputer (Moscow State University, Russian Federation). The results show that: (ⅰ) proposed algorithm of SKG partitioning provides highly balanced results, (ⅱ) observed parallel performance is well agreed with presented theoretical models, (ⅲ) the scheme with all-to-all-communications between subnetworks is the most efficient up to approximately one hundred cores, (ⅳ) master-slave scheme with a single master per node outperforms all-to-all scheme for a large size of a communicator (for our experiments, it has achieved near-linear speedup for up to several hundred processes).
机译:如今,复杂网络已被广泛认为是在交互元素级别上对社会技术系统中的动态过程进行建模的统一框架。随机Kronecker图(SKG)是一种网络生成模型,可以在保留其重要拓扑特性的同时重现真实世界的网络。当SKG的大小达到数千万个节点时,就需要应用并行计算来模拟以分布式方式存储的网络上的进程。通常,对复杂网络上的动态过程进行并行仿真意味着在每次迭代时子网之间的所有通信。在本文中,我们研究了针对大型SKG的动态过程仿真的不同SKG划分算法和不同数据交换算法的效率。我们将并行性能模型给出的理论效率与不同通信模式的实验结果进行了比较。该研究的实验部分是使用罗蒙诺索夫超级计算机(俄罗斯联邦莫斯科国立大学)对最大10亿个节点的稀疏SKG进行的。结果表明:(ⅰ)提出的SKG划分算法提供了高度均衡的结果,(ⅱ)观察到的并行性能与所提出的理论模型很好地吻合,(ⅲ)子网之间具有全部到全部通信的方案是最高达大约一百个内核的高效,每个节点只有一个主节点的(-)主从方案优于大型通信器的所有方案(对于我们的实验,它达到了近线性的加速几百个流程)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号