首页> 外文期刊>Fundamenta Informaticae >Genetic Algorithms As An Alternative Method Of Parameter Estimation And Finding Most Likely Sequences Of States Of Hidden Markov Chains For Hmms And Hybrid Hmm/ann Models
【24h】

Genetic Algorithms As An Alternative Method Of Parameter Estimation And Finding Most Likely Sequences Of States Of Hidden Markov Chains For Hmms And Hybrid Hmm/ann Models

机译:遗传算法作为参数估计和寻找Hmms和Hmm / ann混合模型的隐马尔可夫链状态最可能序列的替代方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper genetic algorithms are used in estimation and decoding processes of a Hidden Markov Model (HMM) and a hybrid HMM/ANN model with conditional binomial distributions. The hybrid model combines a hidden Markov chain with a perceptron which is assumed to constitute a match network. Genetic algorithms are applied here instead of the traditional methods such as the EM algorithm and the Viterbi algorithm. The paper demonstrates performance of an HMM and a hybrid model in modeling the annual number of months, in which some seismic events are recorded. Parameters of the discrete-time two-state models are estimated using the maximum likelihood method, on the basis of data on seismic events that were recorded in Romania in years 1901-1990. Then, on the basis of the estimation results, the most likely sequences of states of the hidden Markov chains are found.
机译:本文将遗传算法用于具有条件二项式分布的隐马尔可夫模型(HMM)和混合HMM / ANN模型的估计和解码过程。混合模型将隐马尔可夫链与感知器相结合,假定该感知器构成匹配网络。在这里应用遗传算法代替了诸如EM算法和Viterbi算法之类的传统方法。本文演示了HMM和混合模型在建模年度月度中的性能,其中记录了一些地震事件。基于最大似然法,基于罗马尼亚在1901-1990年间记录的地震事件数据,估计了离散时间两状态模型的参数。然后,根据估计结果,找到隐马尔可夫链的最可能状态序列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号