首页> 外文期刊>Fundamenta Informaticae >Applications of Kolmogorov Complexity and Universal Codes to Nonparametric Estimation of Characteristics of Time Series
【24h】

Applications of Kolmogorov Complexity and Universal Codes to Nonparametric Estimation of Characteristics of Time Series

机译:Kolmogorov复杂度和通用代码在时间序列特征的非参数估计中的应用

获取原文
获取原文并翻译 | 示例

摘要

We consider finite-alphabet and real-valued time series and the following four problems: i) estimation of the (limiting) probability P(x_0 …x_s) for every s and each sequence x_0 …x_s of letters from the process alphabet (or estimation of the density p(x_0…x_s) for real-valued time series), ii) the so-called on-line prediction, where the conditional probability P(x_(t+1)|x_1x_2…x_t) (or the conditional density p(x_(t+1)|x_1x_2…x_t)) should be estimated, where x_1x_2…x_t are given, iii) regression and iv) classification (or so-called problems with side information). We show that Kolmogorov complexity (KC) and universal codes (or universal data compressors), whose codeword length can be considered as an estimation of KC, can be used as a basis for constructing asymptotically optimal methods for the above problems. (By definition, a universal code can "compress" any sequence generated by a stationary and ergodic source asymptotically to the Shannon entropy of the source.)
机译:我们考虑有限字母和实值时间序列以及以下四个问题:i)对过程字母表中每个s和每个序列x_0…x_s字母的(极限)概率P(x_0…x_s)进行估计(或估计)实值时间序列的密度p(x_0…x_s)的平方),ii)所谓的在线预测,其中条件概率P(x_(t + 1)| x_1x_2…x_t)(或条件密度应该估计p(x_(t + 1)| x_1x_2 ... x_t)),其中给出x_1x_2 ... x_t,iii)回归和iv)分类(或所谓的附带信息问题)。我们表明,Kolmogorov复杂度(KC)和通用代码(或通用数据压缩器)(其代码字长度可以视为KC的估计值)可以用作构造上述问题的渐近最优方法的基础。 (根据定义,通用代码可以将静态和遍历源生成的任何序列渐近压缩到源的香农熵。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号