首页> 外文期刊>Foundations of computing and decision sciences >AN OPTIMIZED K-HARMONIC MEANS ALGORITHM COMBINED WITH MODIFIED PARTICLE SWARM OPTIMIZATION AND CUCKOO SEARCH ALGORITHM
【24h】

AN OPTIMIZED K-HARMONIC MEANS ALGORITHM COMBINED WITH MODIFIED PARTICLE SWARM OPTIMIZATION AND CUCKOO SEARCH ALGORITHM

机译:改进的粒子群优化与布谷鸟搜索算法相结合的优化的K-谐波方法

获取原文
获取原文并翻译 | 示例

摘要

Among the data clustering algorithms, k-means (KM) algorithm is one of the most popular clustering techniques due to its simplicity and efficiency. However, k-means is sensitive to initial centers and it has the local optima problem. K-harmonic-means (KHM) clustering algorithm solves the initialization problem of k-means algorithm, but it also has local optima problem. In this paper, we develop a new algorithm for solving this problem based on an improved version of particle swarm optimization (IPSO) algorithm and KHM clustering. In the proposed algorithm, IPSO is equipped with Cuckoo Search algorithm and two new concepts used in PSO in order to improve the efficiency, fast convergence and escape from local optima. IPSO updates positions of particles based on a combination of global worst, global best with personal worst and personal best to dynamically be used in each iteration of the IPSO. The experimental result on five real-world datasets and two artificial datasets confirms that this improved version is superior to k-harmonic means and regular PSO algorithm. The results of the simulation show that the new algorithm is able to create promising solutions with fast convergence, high accuracy and correctness while markedly improving the processing time.
机译:在数据聚类算法中,k均值(KM)算法由于其简单性和效率而成为最受欢迎的聚类技术之一。但是,k均值对初始中心很敏感,并且存在局部最优问题。 K调和均值(KHM)聚类算法解决了k均值算法的初始化问题,但也存在局部最优问题。在本文中,我们基于改进的粒子群优化(IPSO)算法和KHM聚类,开发了一种解决该问题的新算法。在所提出的算法中,IPSO配备了布谷鸟搜索算法以及PSO中使用的两个新概念,以提高效率,快速收敛并避免局部最优。 IPSO根据全局最差,全局最差与个人最差以及个人最强的组合来更新粒子的位置,以在IPSO的每次迭代中动态使用它们。在五个真实世界数据集和两个人工数据集上的实验结果证实,该改进版本优于k调和方法和常规PSO算法。仿真结果表明,该新算法能够快速收敛,高精度和正确性好,并且能够显着缩短处理时间,从而创造出有希望的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号