首页> 外文期刊>Formal Aspects of Computing >Consistency-preserving refactoring of refinement structures in Event-B models
【24h】

Consistency-preserving refactoring of refinement structures in Event-B models

机译:事件-B型号中细化结构的一致性重构

获取原文
获取原文并翻译 | 示例

摘要

Event-B has been attracting much interest because it supports a flexible refinement mechanism that reduces the complexity of constructing and verifying models of complicated target systems by taking into account multiple abstraction layers of the models. Although most previous studies on Event-B focused on model construction, the constructed models need to be maintained. Moreover, parts of existing models are often reused to construct other models. In this paper, a method is introduced that improves the maintainability and reusability of existing Event-B models. It automatically reconstructs the refinement structure of existing models by constructing models about different sets of variables than that used in the original models, while maintaining the consistencies checked in the original models. The method automatically decomposes each refinement step into multiple steps by taking certain predicates from existing models and deriving additional predicates from the consistency conditions of existing models to create new models consistent with the original ones. By combining the decomposing of refinement steps with the composing of refinement steps, this method automatically restructures a refinement step in accordance with given sets of variables to be taken into account in refinement steps of the refactored models. The results of case studies in which large refinement steps in existing models were decomposed and existing models were restructured to extract reusable parts for constructing other models demonstrated that the proposed method facilitates effective use of the refinement mechanism of Event-B.
机译:Event-B一直吸引了很多兴趣,因为它支持灵活的细化机制,通过考虑模型的多个抽象层来减少构建和验证复杂目标系统的模型的复杂性。虽然最先前关于EVENT-B的研究专注于模型结构,但需要维持建造的模型。此外,现有模型的部分通常重复使用以构建其他模型。本文介绍了一种提高现有事件-B型号的可维护性和可重用性的方法。它通过构造关于不同变量集的模型来自动重建现有模型的细化结构,而不是原始模型中使用的模型,同时维护原始模型中检查的一致性。该方法通过从现有模型中获取某些谓词并从现有模型的一致性条件导出额外的谓词来自动将每个细化步骤分解为多个步骤,以创建与原始模型一致的新模型。通过将改进步骤的分解与细化步骤的组合相结合,该方法根据特定的变量组自动重构细化步骤,以考虑到重构模型的细化步骤中。案例研究结果,其中现有模型中的大型细化步骤进行了分解,并重组现有模型以提取用于构建其他模型的可重复使用的零件证明该方法有助于有效地利用事件-B的细化机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号