...
首页> 外文期刊>Food Hydrocolloids >Influence Of The Overall Charge And Local Charge Density Of Pectin On The Complex Formation Between Pectin And β-lactoglobulin
【24h】

Influence Of The Overall Charge And Local Charge Density Of Pectin On The Complex Formation Between Pectin And β-lactoglobulin

机译:果胶的总电荷和局部电荷密度对果胶与β-乳球蛋白复合物形成的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The complex formation between β-lactoglobulin (β-lg) and pectin is studied using pectins with different physicochemical characteristics. Pectin allows for the control of both the overall charge by degree of methyl-esterification as well as local charge density by the degree of blockiness. Varying local charge density, at equal overall charge is a parameter that is not available for synthetic polymers and is of key importance in the complex formation between oppositely charged (bio)polymers. LMP is a pectin with a high overall charge and high local charge density; HMP_B and HMP_R but a high and low local charge density, respectively. Dynamic light scattering (DLS) titrations identified pH_C, the pH where soluble complexes of β-lg and pectin are formed and pH_Φ, the pH of phase separation, both as a function of ionic strength. pHc decreased with increasing ionic strength for all pectins and was used in a theoretical model that showed local charge density of the pectin to control the onset of complex formation. pH_Φ, passed through a maximum with increasing ionic strength for LMP because of shielding of repulsive interactions between β-lg molecules bound to LMP, while attractive interactions were repressed at higher ionic strength. Potentiometric titrations of homo-molecular solutions and mixtures of β-lg and pectin showed charge regulation in β-lg-pectin complexes. Around pH 5.5-5.0 the pK_as of β-lg ionic groups are increased to induce positive charge on the β-lg molecule; around pH 4.5-3.5 the pk_a values of the pectin ionic groups are lowered to retain negative charge on the pectin. Since pectins with high local charge density form complexes with β-lg at higher ionic strength than pectins with low local charge density, pectin with a high local charge density is preferred in food systems where complex formation between protein and pectin is desired.
机译:使用具有不同理化特性的果胶研究了β-乳球蛋白(β-lg)与果胶之间的复合物形成。果胶允许通过甲基酯化程度来控制总电荷以及通过嵌段度来控制局部电荷密度。在相同的总电荷下,改变局部电荷密度是合成聚合物无法获得的参数,并且在带相反电荷的(生物)聚合物之间形成络合物时至关重要。 LMP是具有高总电荷和高局部电荷密度的果胶。 HMP_B和HMP_R分别具有高局部电荷密度和低局部电荷密度。动态光散射(DLS)滴定法确定了pH_C,形成β-lg和果胶可溶性复合物的pH和pH_Φ(相分离的pH)两者均是离子强度的函数。所有果胶的pHc随离子强度的增加而降低,并用于理论模型,该模型显示果胶的局部电荷密度以控制复合物形成的开始。由于屏蔽了与LMP结合的β-Ig分子之间的排斥相互作用,pH_Φ随LMP的离子强度增加而通过最大值,而在较高的离子强度下则抑制了有吸引力的相互作用。均质溶液以及β-Ig和果胶混合物的电位滴定显示了β-Ig-果胶复合物中的电荷调节。在pH 5.5-5.0左右,β-Ig离子基团的pK_as升高,以在β-Ig分子上诱导正电荷。 pH值约为4.5-3.5时,果胶离子基团的pk_a值降低,以在果胶上保留负电荷。由于具有高局部电荷密度的果胶比具有低局部电荷密度的果胶以更高的离子强度与β-Ig形成复合物,因此在需要蛋白质与果胶之间形成复合物的食品系统中,具有高局部电荷密度的果胶是优选的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号