首页> 外文期刊>Finite fields and their applications >Carlitz-Wan conjecture for permutation polynomials and Weill bound for curves over finite fields
【24h】

Carlitz-Wan conjecture for permutation polynomials and Weill bound for curves over finite fields

机译:置换多项式的Carlitz-Wan猜想和有限域上曲线的Weill界

获取原文
获取原文并翻译 | 示例

摘要

The Carlitz-Wan conjecture, which is now a theorem, asserts that for any positive integer n, there is a constant C n such that if q is any prime power C(n )with GCD(n, q - 1) 1, then there is no permutation polynomial of degree n over the finite field with q elements. From the work of von zur Gathen, it is known that one can take C-n = n(4). On the other hand, a conjecture of Mullen, which asserts essentially that one can take C-n = n(n - 2) has been shown to be false. In this paper, we use a precise version of Weil bound for the number of points of affine algebraic curves over finite fields to obtain a refinement of the result of von zur Gathen where n(4) is replaced by a sharper bound. As a corollary, we show that Mullen's conjecture holds in the affirmative if n(n - 2) is replaced by n(2) (n - 2)(2). (C) 2018 Elsevier Inc. All rights reserved.
机译:现在是一个定理的Carlitz-Wan猜想断言,对于任何正整数n,都有一个常数C n,使得如果q是任意质数幂> C(n)且GCD(n,q-1)> 1 ,则在具有q个元素的有限域上不存在次数为n的置换多项式。从冯·祖尔·加森(von zur Gathen)的工作中,我们知道可以取C-n = n(4)。另一方面,Mullen的猜想被证明是错误的,该猜想实质上断言一个人可以取C-n = n(n-2)。在本文中,我们对有限域上仿射代数曲线的点数使用Weil边界的精确版本,以获得von zur Gathen的结果的细化,其中n(4)被更尖锐的边界替换。作为推论,我们证明如果n(n-2)被n(2)(n-2)(2)代替,则穆伦猜想成立。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号