首页> 外文期刊>Finite fields and their applications >Minimum distance and the minimum weight codewords of Schubert codes
【24h】

Minimum distance and the minimum weight codewords of Schubert codes

机译:Schubert码的最小距离和最小权重码字

获取原文
获取原文并翻译 | 示例

摘要

We consider linear codes associated to Schubert varieties in Grassmannians. A formula for the minimum distance of these codes was conjectured in 2000 and after having been established in various special cases, it was proved in 2008 by Xiang. We give an alternative proof of this formula. Further, we propose a characterization of the minimum weight codewords of Schubert codes by introducing the notion of Schubert decomposable elements of certain exterior powers. It is shown that codewords corresponding to Schubert decomposable elements are of minimum weight and also that the converse is true in many cases. A lower bound, and in some cases, an exact formula, for the number of minimum weight codewords of Schubert codes is also given. From a geometric point of view, these results correspond to determining the maximum number of F-q-rational points that can lie on a hyperplane section of a Schubert variety in a Grassmannian with its nondegenerate embedding in a projective subspace of the Plucker projective space, and also the number of hyperplanes for which the maximum is attained. (C) 2017 Elsevier Inc. All rights reserved.
机译:我们考虑与格拉斯曼主义者中的舒伯特品种相关的线性代码。这些编码的最小距离的公式是在2000年推测的,在各种特殊情况下确定后,Xiang于2008年证明了该公式。我们给出该公式的替代证明。此外,我们通过引入某些外部能力的Schubert可分解元素的概念,提出了Schubert码的最小权重码字的表征。结果表明,与舒伯特可分解元素相对应的码字具有最小的权重,并且在许多情况下反之亦然。还给出了舒伯特码的最小权重码字的数量的下限,在某些情况下,还提供了精确的公式。从几何角度来看,这些结果对应于确定格拉斯曼氏族中Schubert变体的超平面截面上的Fq有理点的最大数目,并且其非简并嵌入Plucker射影空间的投影子空间中,并且达到最大值的超平面的数量。 (C)2017 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号