首页> 外文期刊>Finite Elements in Analysis and Design >Quasi-spherical coordinate systems for three-dimensional stress singularity eigenproblems
【24h】

Quasi-spherical coordinate systems for three-dimensional stress singularity eigenproblems

机译:三维应力奇异本征问题的拟球坐标系

获取原文
获取原文并翻译 | 示例

摘要

To avoid the inherent singularity of conventional spherical coordinates at their poles, quasi-spherical coordinate systems are developed. Using these systems, a finite element procedure is developed to determine the displacement eigensolutions at three-dimensional vertices in which the displacement and stress are proportional to the (λ + 1)th and λth powers of the distance from the vertices, respectively. The resulting global equation is a second-order characteristic matrix equation. Several demonstrating problems are investigated. Satisfactory results are obtained. Unlike the previous attempts by singular transformation technique, the present predictions are insensitive to the numerical integration order.
机译:为了避免常规球坐标在其极点处固有的奇异性,开发了准球坐标系。使用这些系统,开发了有限元程序来确定三维顶点处的位移本征解,其中位移和应力分别与距顶点的距离的第(λ+1)和λth幂成比例。所得的整体方程为二阶特征矩阵方程。研究了几个证明问题。获得令人满意的结果。与先前通过奇异变换技术进行的尝试不同,当前的预测对数值积分顺序不敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号