首页> 外文OA文献 >Complex coordinate methods for hydrodynamic instabilities and Sturm-Liouville eigenproblems with an interior singularity
【2h】

Complex coordinate methods for hydrodynamic instabilities and Sturm-Liouville eigenproblems with an interior singularity

机译:具有内部奇异性的流体动力学不稳定性和sturm-Liouville特征问题的复坐标方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Calculations of inviscid, linearized waves in fluids are very difficult when a mean wind or current U(y) is included because the differential equation is singular wherever U(y)=c, the phase speed. These "critical latitude," "critical level," or "critical point" singularities are particularly severe for Chebyshev methods since these global expansion algorithms are very sensitive to the analytic properties of the solution. A simple remedy is described: by making a change of coordinates y=f(x) where y is the original variable and x is the new coordinate with f(x) a complex function, one can solve the problem on an arc in the complex plane that makes a wide detour around the singularity. Specific guidelines for choosing f(x) for different problems are given in the text. Results are impressive: for an eigenvalue problem with a pole in the middle of the original real interval (a "Sturm-Liouville problem of the fourth kind"), just six basis functions suffice to calculate the real and imaginary parts of the lowest eigenvalue to within 1.4%. For strong instability, i.e., modes whose phase speeds have large imaginary parts, the complex mapping is unnecessary because the critical latitudes are complex and distant from the real axis. Even so, the mapping is useful for instability problems because it can be used to make calculations for very slowly growing modes to follow the changes in c right up to the "neutral curve" where the imaginary part of c=0. Although especially valuable for spectral algorithms, the same trick can be applied with finite difference methods also. The main disadvantage of the algorithm is that the eigenfunction must be calculated in a second, separate step, but this is usually a minor flaw in comparison to the complex mapping's virtues for coping with singular eigenvalue problems.
机译:在包括平均风或电流U(Y)的情况下,在包括差分方程是奇异的情况下,在包括平均风或电流U(Y)时,流体中的线性化波是非常困难的,无论u(y)= c,相位速度。这些“关键纬度”,“临界水平”或“临界点”奇点对于Chebyshev方法特别严重,因为这些全局扩展算法对解决方案的分析性质非常敏感。描述了一个简单的补救措施:通过更改坐标y = f(x),其中y是y是原始变量,x是与f(x)的新坐标是一个复杂的功能,可以解决复杂的弧上的问题飞机围绕着奇点绕道而行。在文本中给出了用于不同问题的F(x)的具体指南。结果令人印象深刻:对于在原始实际间隔中间的杆子(第四类的“Sturm-Liouville问题”)的特征值问题,只有六个基础函数足以计算最低特征值的真实和虚部在1.4%之内。对于强不稳定性,即,相位速度具有大的虚部的模式,不需要复杂的映射,因为关键纬度是复杂的并且远离真实轴。即便如此,映射对于不稳定问题是有用的,因为它可以用于计算非常缓慢的生长模式,以便遵循C = 0的虚拟部分的C右键的变化以遵循C = 0的“中性曲线”。虽然对光谱算法特别有价值,但也可以用有限差分方法应用相同的技巧。该算法的主要缺点是必须在第二个分开的步骤中计算特征函数,但是与复杂的映射用于应对奇异特征值问题的复杂映射的美德,这通常是一个轻微缺陷。

著录项

  • 作者

    John P Boyd;

  • 作者单位
  • 年度 1985
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_us
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号