首页> 外文期刊>Finite Elements in Analysis and Design >Graphically driven interactive finite element stress reanalysis for machine elements in the early design stage
【24h】

Graphically driven interactive finite element stress reanalysis for machine elements in the early design stage

机译:在设计的早期阶段,通过图形驱动的交互式有限元机器零件应力再分析

获取原文
获取原文并翻译 | 示例

摘要

In this work a new graphically driven interactive stress reanalysis finite element technique has been developed so that an engineer can easily carry out manual geometric changes in a machine element during the early design stage. The interface allow an engineer to model a machine element in the commercial finite element code ANSYS~® and then modify part geometry graphically to see instantaneous graphical changes in the stress and displacement contour plots. A reanalysis technique is used to enhance the computational performance for solving the modified problem; with the aim of obtaining results of acceptable accuracy in a short a period of time in order to emphasize the interactive nature of the design process. Three case studies are considered to demonstrate the effectiveness of the prototype graphically driven reanalysis finite element technique. The finite element type considered is a plane stress four-node quadrilateral based on a homogenous, isotropic, linear elastic material. The first two problems consider a plate with hole and plate with fillets. These two examples demonstrate that by changing the hole and fillet size/shape, an engineer can manually obtain an optimum design based on the stress concentration factor, i.e. engineer-driven optimization process. Each case study considered multiple redesigns. A combined approximation reanalysis method is used to solve each redesigned problem. The third case study considers a support bracket. The goal is to design the cantilever portion of the bracket to have uniform strength and to minimize the stress concentration at the fillet.
机译:在这项工作中,开发了一种新的图形驱动的交互式应力再分析有限元技术,以便工程师可以在设计的早期阶段轻松地对机器元素进行手动几何更改。该界面允许工程师使用商业有限元代码ANSYS®对机器元素进行建模,然后以图形方式修改零件几何形状,以查看应力和位移轮廓图中的瞬时图形变化。使用重新分析技术来提高计算性能,以解决修改后的问题;目的是在短时间内获得可接受的精度结果,以强调设计过程的交互性。考虑了三个案例研究,以证明原型图形驱动的再分析有限元技术的有效性。所考虑的有限元类型是基于均质,各向同性,线性弹性材料的平面应力四节点四边形。前两个问题考虑带孔板和带圆角板。这两个示例表明,通过更改孔和圆角的尺寸/形状,工程师可以基于应力集中系数手动获得最佳设计,即工程师驱动的优化过程。每个案例研究都考虑了多次重新设计。组合近似重新分析方法用于解决每个重新设计的问题。第三个案例研究考虑了一个支撑支架。目的是将支架的悬臂部分设计为具有均匀的强度,并最大程度地减小在圆角处的应力集中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号