首页> 外文期刊>Finite Elements in Analysis and Design >Optimization of stability-constrained geometrically nonlinear shallow trusses using an arc length sparse method with a strain energy density approach
【24h】

Optimization of stability-constrained geometrically nonlinear shallow trusses using an arc length sparse method with a strain energy density approach

机译:弧长稀疏法和应变能密度法优化受约束的几何非线性浅桁架

获取原文
获取原文并翻译 | 示例

摘要

A technique for the optimization of stability-constrained geometrically nonlinear shallow trusses with snap-through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite-element formulation. The optimization method uses an iterative scheme that evaluates the performance of the design variables and then updates them according to a recursive formula that is controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical-limit load that causes snap-through of the structure. The optimization scheme is programmed into a nonlinear finite-element algorithm to find the large strain energy at critical-limit loads. Examples of highly nonlinear trusses that are found in literature are presented to verify the method.
机译:通过离散长度有限元公式中的弧长方法和应变能密度方法,论证了一种具有快速稳定特性的稳定受约束的几何非线性浅桁架的优化技术。优化方法使用迭代方案,该方案评估设计变量的性能,然后根据由弧长方法控制的递归公式更新它们。当在所有构件中发现均匀的非线性应变能密度时,可以实现最小的重量设计。这种最小情况使设计载荷刚好低于导致结构快速断裂的临界极限载荷。该优化方案被编程为非线性有限元算法,以在临界极限载荷下找到较大的应变能。介绍了在文献中发现的高度非线性桁架的示例,以验证该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号