首页> 外文期刊>Finite Elements in Analysis and Design >Structural dynamic analysis using hybrid and mixed finite element models
【24h】

Structural dynamic analysis using hybrid and mixed finite element models

机译:使用混合和混合有限元模型进行结构动力分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents and discusses a hybrid-mixed stress finite element model for the dynamic analysis of structures, assuming a physically and geometrically linear behavior. In this model, both the stress and the displacement fields are approximated in the domain of each element. The displacements along the static boundary are also independently approximated. Orthonormal Legendre polynomials are used as approximation functions. The use of these functions enables the use of analytical closed form solutions for the computation of all structural operators and leads to the development of very effective p-refinement procedures. The linear dynamic analysis is performed using time integration procedures. For this purpose, the classical Newmark, Wilson-θ and α-HHT methods are implemented and tested. A recent and promising alternative approach, based on the definition of a mixed approximation in the time domain is also implemented and assessed. The model being discussed is applied to the solution of plane elasticity and Reissner-Mindlin plate bending problems. To validate the model, to illustrate its potential and to assess its accuracy and efficiency, several numerical examples are discussed and comparisons are made with analytical solutions and solutions provided by other numerical techniques.
机译:本文介绍并讨论了一种用于结构动态分析的混合混合应力有限元模型,假设其具有物理和几何线性行为。在该模型中,应力场和位移场都在每个单元的域中近似。沿着静态边界的位移也被独立地近似。正交勒让德多项式被用作近似函数。这些功能的使用使得可以使用解析闭合形式的解决方案来计算所有结构算符,并导致开发出非常有效的p精炼程序。线性动态分析是使用时间积分程序执行的。为此,实施并测试了经典的Newmark,Wilson-θ和α-HHT方法。基于时域混合逼近的定义,最近的一种很有前途的替代方法也得以实施和评估。所讨论的模型用于解决平面弹性和Reissner-Mindlin板弯曲问题。为了验证该模型,说明其潜力并评估其准确性和效率,讨论了几个数值示例,并与分析解决方案和其他数值技术提供的解决方案进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号