首页> 外文期刊>Finite Elements in Analysis and Design >Semi-implicit finite strain constitutive integration of porous plasticity models
【24h】

Semi-implicit finite strain constitutive integration of porous plasticity models

机译:多孔塑性模型的半隐式有限应变本构积分

获取原文
获取原文并翻译 | 示例

摘要

Two porous plasticity models, Rousselier and Gurson-Tvergaard-Needleman (GTN), are integrated with a new semi-implicit integration algorithm for finite strain plasticity, It consists of using relative GreenLagrange during the iteration process and incremental frame updating corresponding to a polar decomposition. Lowdin's method of orthogonalization is adopted to ensure incremental frameinvariance. In addition, a smooth replacement of the complementarily condition is used Since porous models are known to be difficult to integrate due to the combined effect of void fraction growth, stress and effective plastic strain evolution, we perform a complete assessment of our semi-implicit algorithm. Semi-implicit algorithms take advantage of different evolution rates to enhance the robustness in difficult to converge problems. A detailed description of the constitutive algorithm is performed, with the key components comprehensively exposed. In addition to the fully detailed constitutive algorithms, we use mixed finite strain elements based on Arnold's MINI formulation. This formulation passes the infsup test and allows a direct application with porous models. Isoerror maps for two common initial stress states are shown. In addition, we extensively test the two models with established benchmarks. Specifically, the cylindrical tension test as well as the butterfly shear specimen are adopted for validation. A 3D tension test is used to investigate mesh dependence and the effect of a length scale. Results show remarkable robustness. (C) 2015 Elsevier BM. All rights reserved.
机译:Rousselier和Gurson-Tvergaard-Needleman(GTN)这两个多孔可塑性模型与新的半隐式积分算法集成在一起,用于有限应变可塑性,其中包括在迭代过程中使用相对GreenLagrange和对应于极坐标分解的增量框架更新。采用Lowdin的正交化方法来确保增量帧不变性。此外,由于补充了多孔条件,由于孔隙率增长,应力和有效塑性应变演化的综合作用,多孔模型难以整合,因此我们对半隐式算法进行了完整的评估。半隐式算法利用不同的演化速率来增强难以收敛问题的鲁棒性。对本构算法进行了详细描述,并全面暴露了关键组成部分。除了详细的本构算法之外,我们还使用基于Arnold的MINI公式的混合有限应变元素。该配方通过了infsup测试,可直接用于多孔模型。显示了两个常见初始应力状态的等差图。此外,我们使用已建立的基准测试了这两种模型。具体而言,采用圆柱拉伸试验以及蝶形剪切试样进行验证。 3D张力测试用于研究网格依赖性和长度标度的影响。结果显示了出色的鲁棒性。 (C)2015 Elsevier BM。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号