首页> 外文期刊>Finite Elements in Analysis and Design >Co-rotational finite element formulation used in the Koiter-Newton method for nonlinear buckling analyses
【24h】

Co-rotational finite element formulation used in the Koiter-Newton method for nonlinear buckling analyses

机译:Koiter-Newton方法中用于非线性屈曲分析的同向旋转有限元公式

获取原文
获取原文并翻译 | 示例

摘要

The Koiter-Newton approach is a novel reduced order modeling technique for buckling analysis of geometrically nonlinear structures. The load carrying capability of the structure is achieved by tracing the entire equilibrium path in a stepwise manner. At each step a reduced order model generated from Koiter's asymptotic expansion provides a nonlinear prediction for the full model, corrected by a few Newton steps. The construction of the reduced order model requires derivatives of the strain energy with respect to the degrees of freedom up to the fourth order, which is two orders more than traditionally needed for a Newton based nonlinear finite element technique. In this paper we adopt the co-rotational formulation to facilitate these complex differentiations. We extend existing co-rotational beam and shell element formulations to make them applicable for the high order derivatives of the strain energy. The geometrical nonlinearities are taken into account using derivatives of the local co-rotational frame with respect to global degrees of freedom. This is done outside the standard element routines and is thus independent of the element type. We utilize three configurations and the nonlinear rotation matrix to describe finite rotations of the shell accurately, and profit from the automatic differentiation technique to optimize the programming of high order derivatives. The performance of the proposed approach using the co-rotational formulation is demonstrated using benchmark examples of isotropic and laminated composite structures. (C) 2016 Elsevier B.V. All rights reserved.
机译:Koiter-Newton方法是一种新颖的降阶建模技术,用于几何非线性结构的屈曲分析。结构的承载能力是通过逐步跟踪整个平衡路径来实现的。在每一步中,由Koiter渐近展开生成的降阶模型为整个模型提供了非线性预测,并通过一些牛顿步进行了校正。降阶模型的构造需要相对于自由度的应变能导数直至四阶,这比基于牛顿的非线性有限元技术传统上所需的阶数要高两个阶。在本文中,我们采用同向旋转公式来促进这些复杂的区分。我们扩展了现有的同向旋转梁和壳单元公式,以使其适用于应变能的高阶导数。关于局部自由度,使用局部同向旋转框架的导数考虑了几何非线性。这是在标准元素例程之外完成的,因此与元素类型无关。我们利用三种配置和非线性旋转矩阵来精确描述壳体的有限旋转,并利用自动微分技术来优化高阶导数的编程。使用各向同性和层状复合结构的基准示例演示了使用同向旋转配方的拟议方法的性能。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号