首页> 外文期刊>Fatigue & Fracture of Engineering Materials & Structures >ANN based prediction model for fatigue crack growth in DP steel
【24h】

ANN based prediction model for fatigue crack growth in DP steel

机译:基于ANN的DP钢疲劳裂纹扩展预测模型。

获取原文
获取原文并翻译 | 示例

摘要

An artificial neural network (ANN)-based model was developed to analyse high-cycle fatigue crack growth rates (da/dN) as a function of stress intensity ranges (△K) for dual phase (DP) steel. The training data consisted of da/dN at △K ranges between 5 and 16 Mpa /m for DP STEEL WITH MARTENSITE CONTENTS IN THE RANGE 32 TO 76/100. The ANN back-propagation model with Gaussian activation function exhibited excellent agreement with the experimental results. The fatigue crack growth rate predictions were made to demonstrate its practical significance in a given real-life situation. Because of the wide range of data points used during training of the model, it will provide a useful predictor for fatigue crack growth in DP steels.
机译:建立了基于人工神经网络(ANN)的模型,以分析双相(DP)钢的高周疲劳裂纹扩展速率(da / dN)与应力强度范围(△K)的关系。对于马氏体含量在32至76/100之间的DP钢,训练数据由△K范围在5至16 Mpa / m的da / dN组成。具有高斯激活函数的ANN反向传播模型与实验结果显示出极好的一致性。进行了疲劳裂纹扩展速率预测,以证明其在给定的实际情况下的实际意义。由于模型训练期间使用的数据点范围广泛,它将为DP钢的疲劳裂纹扩展提供有用的预测指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号