首页> 外文期刊>Extremes >INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles
【24h】

INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles

机译:INLA变得极端:贝叶斯尾回归用于估计高时空分位数

获取原文
获取原文并翻译 | 示例
           

摘要

This work is motivated by the challenge organized for the 10th International Conference on Extreme-Value Analysis (EVA2017) to predict daily precipitation quantiles at the 99.8% level for each month at observed and unobserved locations. Our approach is based on a Bayesian generalized additive modeling framework that is designed to estimate complex trends in marginal extremes over space and time. First, we estimate a high non-stationary threshold using a gamma distribution for precipitation intensities that incorporates spatial and temporal random effects. Then, we use the Bernoulli and generalized Pareto (GP) distributions to model the rate and size of threshold exceedances, respectively, which we also assume to vary in space and time. The latent random effects are modeled additively using Gaussian process priors, which provide high flexibility and interpretability. We develop a penalized complexity (PC) prior specification for the tail index that shrinks the GP model towards the exponential distribution, thus preventing unrealistically heavy tails. Fast and accurate estimation of the posterior distributions is performed thanks to the integrated nested Laplace approximation (INLA). We illustrate this methodology by modeling the daily precipitation data provided by the EVA2017 challenge, which consist of observations from 40 stations in the Netherlands recorded during the period 1972-2016. Capitalizing on INLA's fast computational capacity and powerful distributed computing resources, we conduct an extensive cross-validation study to select the model parameters that govern the smoothness of trends. Our results clearly outperform simple benchmarks and are comparable to the best-scoring approaches of the other teams.
机译:这项工作是受第十届国际极值分析会议(EVA2017)所组织的挑战的激励,该挑战旨在预测观测和非观测位置每个月的日降水量为99.8%。我们的方法基于贝叶斯广义加性建模框架,该框架旨在估计空间和时间上的边际极限的复杂趋势。首先,我们使用包含空间和时间随机效应的降水强度的伽马分布来估计较高的非平稳阈值。然后,我们分别使用伯努利(Bernoulli)分布和广义帕累托(GP)分布对阈值超出的速率和大小进行建模,我们还假定阈值超出的时间和空间会发生变化。潜在的随机效应是使用高斯过程先验加法建模的,具有较高的灵活性和可解释性。我们开发了针对尾部索引的惩罚性复杂度(PC)先前规范,该规范将GP模型缩小为指数分布,从而防止了不切实际的粗尾。由于集成了嵌套拉普拉斯近似(INLA),因此可以快速,准确地估计后验分布。我们通过对EVA2017挑战提供的每日降水数据进行建模来说明这种方法,该数据包括1972-2016年期间荷兰40个观测站的观测值。利用INLA的快速计算能力和强大的分布式计算资源,我们进行了广泛的交叉验证研究,以选择控制趋势平滑度的模型参数。我们的结果明显优于简单的基准测试,并且可以与其他团队的最佳评分方法相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号