首页> 外文期刊>Expert systems with applications >Attribute-based Neural Collaborative Filtering
【24h】

Attribute-based Neural Collaborative Filtering

机译:基于属性的神经协同滤波

获取原文
获取原文并翻译 | 示例

摘要

The core task of recommendation systems is to capture user preferences for items. Dot product operations are usually used to mine user preferences for items. However, the dot product can only capture the low order linear relationships between users and items. In addition, to alleviate the data sparsity problem, current methods mainly introduce auxiliary information, such as user/item attribute information. This attribute information is often treated equivalently. In fact, the importance of this information has different effects on the recommendation results. Therefore, in this paper, we propose a novel Attribute-based Neural Collaborative Filtering (ANCF) method to solve the above problems. Specifically, we use the attention mechanism to distinguish the importance of attribute information and integrate it into the corresponding user and item feature representations to obtain a complete feature representation of users and items. To further capture the high-order interactive relationship between users and items, we use a multi-layer perceptron in ANCF to fully learn the high-order nonlinear relationship between users and items. Extensive experiments on four publicly available datasets demonstrate the effectiveness of the proposed ANCF framework.
机译:推荐系统的核心任务是捕获用户的用户首选项。 DOT产品操作通常用于清除用户偏好的物品。然而,点产品只能捕获用户和项目之间的低阶线性关系。此外,为了缓解数据稀疏问题,目前的方法主要引入辅助信息,例如用户/项目属性信息。此属性信息通常等效对待。实际上,这些信息的重要性对推荐结果产生了不同的影响。因此,在本文中,我们提出了一种基于新的基于属性的神经协作滤波(CNANF)方法来解决上述问题。具体地,我们使用注意机制来区分属性信息的重要性并将其集成到相应的用户和项目特征表示中,以获得用户和项目的完整特征表示。为了进一步捕获用户和项目之间的高阶交互关系,我们在ANCF中使用多层的Perceptron来完全了解用户和项目之间的高阶非线性关系。四个公共数据集的广泛实验证明了拟议的ANCF框架的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号