首页> 外文期刊>Expert systems with applications >An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm
【24h】

An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm

机译:一种基于改进的黑猩猩优化算法的热成像乳腺癌成像的高效多级阈值分段方法

获取原文
获取原文并翻译 | 示例

摘要

Thermography images are a helpful screening tool that can detect breast cancer by showing the body parts that indicate an abnormal change in temperature. Various segmentation methods are proposed to extract regions of interest from breast cancer images to enhance the classification. Many issues were solved using thresholding. In this paper, a new efficient version of the recent chimp optimization algorithm (ChOA), namely opposition based Levy Flight chimp optimizer (IChOA), was proposed. The original ChOA algorithm can stagnate in local optima and needs varied exploration with an adequate blending of exploitation. Therefore, the convergence is accelerated by improving the initial diversity and good exploitation capability at a later stage of generations. Opposition-based learning (OBL) is applied at the initialization phase of ChOA to boost its population diversity in the search space, and the Levy Flight is used to enhance its exploitation. Moreover, the IChOA is applied to tackle the image segmentation problem using multilevel thresholding. The proposed method tested using Otsu and Kapur methods over a dataset from Mastology Research with Infrared Image (DMR-IR) database during the optimization process. Furthermore, compared against seven other meta-heuristic algorithms, namely Gray wolf optimization (GWO), Moth flame optimization (MFO), Whale optimization algorithm (WOA), Sine-cosine algorithm (SCA), Slap swarm algorithm (SSA), Equilibrium optimization (EO), and original Chimp optimization algorithm (ChOA). Results based on the fitness values of obtained best solutions revealed that the IChOA achieved valuable and accurate results in terms of quality, consistency, accuracy, and the evaluation matrices such as PSNR, SSIM, and FSIM. Eventually, IChOA obtained robustness for the segmentation of various positive and negative cases compared to the methods of its counterparts.
机译:热成像图像是一个有用的筛选工具,可通过示出的身体部位,其指示在温度的异常变化检测乳腺癌。提出了各种分割方法提取的乳腺癌图像感兴趣的区域,以提高分类。许多问题是使用阈值来解决。在本文中,最近的黑猩猩优化算法的一种新的高效的版本(蔡),即基于反对征收飞行黑猩猩优化(IChOA),提出了。原来蔡算法可在局部最优停滞,需要不同的勘探与开采的充分混合。因此,收敛是通过提高初期的多样性和良好的开发能力,在几代人的后期加速。基于反对党学习(OBL)在蔡的初始化阶段被应用,以提高其种群的多样性在搜索空间和利维飞行是用来增强它的剥削。此外,IChOA被施加到处理使用多级阈值的图像分割问题。所提出的方法,使用在优化过程中的Otsu和卡普尔方法在从Mastology研究与红外图像(DMR-IR)数据库的数据集进行测试。此外,与七元启发式算法,即灰狼优化(GWO),防蛀阻燃优化(MFO),鲸优化算法(WOA),正弦余弦算法(SCA),噼群算法(SSA)相比,平衡优化(EO),和原始黑猩猩优化算法(CHOA)。基于所获得的最佳解决方案的适应度值结果表明,在IChOA质量,一致性,准确性及评价基质如PSNR,SSIM,和FSIM方面取得有价值和准确的结果。最终,获得IChOA为鲁棒性的相比,其对应物的方法的各种正和负的情况下的分割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号