首页> 外文期刊>Expert systems with applications >Nonlinear classification of emotion from EEG signal based on maximized mutual information
【24h】

Nonlinear classification of emotion from EEG signal based on maximized mutual information

机译:基于最大化的互信息的EEG信号的非线性分类

获取原文
获取原文并翻译 | 示例

摘要

Recent research reveals that continuous efforts are being made to explore the relationship between EEG signals and manually scored emotions through feature extraction or emotion extraction. In order to achieve emotion extraction, wavelet transforms, Support Vector Machine (SVM), higher-order crossing, short term Fourier transform and ANOVA as classifiers are commonly used. This paper presents for the first time, the determination of maximally informative dimensions from EEG signals, the application of the same for the prediction of human emotions and assessment of the prediction for manually scored emotions. This is an alternative approach of emotion extraction compared to traditional approaches such as Support Vector Machines (SVM) and random forest. The information space, that is available in an EEG database does not usually map into the emotion space entirely. Thus a relevant subspace needs to be developed, which satisfactorily defines the target emotional space. Feature vectors of the dataset are reoriented to the directions, which are relevant informative directions for identifiable emotion. The correlation of manually scored emotion with EEG signal is assessed using mutual Information concerning emotional space. There is no hidden assumption in this method and hence the method is generic in nature. Our method predicts 82% and 72% in 'two-class emotional scoring' and 'three-class emotional scoring' methods of emotions respectively in a limited dataset of 32 subjects. The maximum prediction recorded is 95.87% for the dominance component of emotion.
机译:最近的研究表明,正在持续努力探索脑电图信号与通过特征提取或情感提取的手动均衡情绪。为了实现情绪提取,小波变换,支持向量机(SVM),常用为分类器的高阶交叉,短期傅里叶变换和ANOVA。本文首次呈现,确定从脑电图信号的最大信息尺寸,对人类情绪预测的应用以及对手动均衡情绪的预测的评估。与支持向量机(SVM)和随机森林等传统方法相比,这是情感提取的替代方法。在EEG数据库中提供的信息空间通常不会完全映射到情感空间。因此,需要开发相关的子空间,令人满意地定义了目标情绪空间。数据集的特征向量重新定向到方向,这些方向是可识别的情感的相关信息方向。使用关于情绪空间的相互信息来评估手动评分情绪与EEG信号的相关性。此方法中没有隐藏的假设,因此该方法本质上是通用的。我们的方法在“两级情感评分”和“三类情绪评分”中的情绪中预测82%和72%,分别在32个科目的有限数据集中。记录的最大预测为情感的主导成分的95.87%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号