首页> 外文期刊>Expert systems with applications >Nine-Axis IMU-based Extended inertial odometry neural network
【24h】

Nine-Axis IMU-based Extended inertial odometry neural network

机译:九轴基于IMU的延长惯性内径神经网络

获取原文
获取原文并翻译 | 示例

摘要

With the development of mobile devices, such as smartphones, research on fast and accurate trajectory tracking is being actively conducted. This research requires a continuous integration of the acceleration and angular velocity data obtained from the low-cost microelectromechanical system-based inertial measurement unit (IMU) installed in a device to track the user's trajectory. During this process, drift occurs over time due to the bias and intrinsic error of the IMU sensor. Hence, the 6-Axis IMU-based inertial odometry neural network (IONet) using deep learning, which is designed as a framework for velocity estimation, is used to reduce drift by dividing the acceleration data into independent windows. However, drift still occurs in estimating a pose containing both a position and an orientation because the integration of pose changes is also required. In this study, we proposed the Extended IONet that combines a 9-Axis IONet and Pose-TuningNet to improve the accuracy of trajectory tracking by compensating for the drift problem of the 6-Axis IONet. The proposed 9-Axis IONet uses the gravitational acceleration and geomagnetic data of the IMU in addition to the input structure of the existing 6-Axis IONet; thus, the estimation accuracy of pose changes improves by reducing the data dependence on the original input of the 6-Axis IONet. The proposed Pose-TuningNet is an auxiliary network that is capable of estimating pose changes more precisely using the higher-dimensional inclination-angle information obtained from the IMU to focus on the noise model of the IMU. Experiments were conducted using the Oxford Inertial Odometry Dataset, which is public dataset for deep learning based inertial navigation research to verify the performance of the proposed neural network. Compared with the existing 6-Axis IONet, the Extended IONet achieved superior performance in five out of seven cases, and its overall 39.8% RMSE improvement demonstrated its excellent performance. Additionally, the results showed that Pose-TuningNet improved the position estimation performance by correcting the drift problem in the 9-Axis IONet.
机译:随着移动设备的开发,例如智能手机,正在积极进行快速和准确的轨迹跟踪的研究。该研究需要连续地集成从安装在设备中的基于低成本的微机电系统的惯性测量单元(IMU)中获得的加速度和角速度数据,以跟踪用户的轨迹。在此过程中,由于IMU传感器的偏置和内在误差,随着时间的推移发生漂移。因此,使用深度学习的基于6轴IMU的惯性内径内径神经网络(电离)被设计为速度估计的框架,用于通过将加速度数据划分为独立窗口来减少漂移。然而,在估计包含位置和取向的姿势时仍然发生漂移,因为还需要姿势变化的集成。在这项研究中,我们提出了将9轴电离单元和姿势TUNINGNET结合的延伸电离单元来提高轨迹跟踪的准确性,通过补偿6轴电离单元的漂移问题。所提出的9轴电离单元除了现有的6轴电离单元的输入结构之外,还使用IMU的重力加速度和地质信息;因此,通过减少对6轴电离单元的原始输入的数据依赖性来改善姿势变化的估计精度。所提出的姿势TUNINGNET是一种辅助网络,其能够更精确地使用从IMU获得的高维倾斜角度信息来估计姿势变化,以专注于IMU的噪声模型。使用牛津惯性内径数据集进行实验,该数据集是基于深度学习的惯性导航研究的公共数据集,以验证所提出的神经网络的性能。与现有的6轴电离子相比,延伸的电离子在7例中的五种情况下实现了卓越的性能,其总体上39.8%的RMSE改善证明了其优异的性能。另外,结果表明,姿势TUNINGNET通过校正9轴电离单元中的漂移问题来改善位置估计性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号