首页> 外文期刊>Expert systems with applications >Meta-neuron learning based spiking neural classifier with time-varying weight model for credit scoring problem
【24h】

Meta-neuron learning based spiking neural classifier with time-varying weight model for credit scoring problem

机译:基于Meta-neuron学习的尖刺神经分类器,具有时间不同重量模型的信用评分问题

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a meta-neuron learning-based spiking neural classifier with a time-varying weight model (MeST). MeST is developed to handle the class imbalance in classification problems without any data preprocessing methods. Meta-neuron based learning algorithm in MeST uses normalized postsynaptic potentials (global information) and weight of the connection (local information) to determine the sensitivity modulation factor. This modulation factor determines the proportion of the weight update for a given set of presynaptic spikes. The weight update is then embedded in a Gaussian function to determine the time-varying weight update. The centre of the time-varying Gaussian function is determined by the presynaptic spike times. MeST is demonstrated on 10 benchmark datasets from the University of California, Irvine California machine learning repository and then applied to solve credit scoring using three real-world datasets. Performance studies show that the generalization ability of MeST is better than other spiking neural networks with constant weight model, despite having a simple architecture. Furthermore, compared to other non-spiking shallow machine learning classifiers, MeST is a slightly better model for classification using highly imbalanced datasets. This indicates the learnability of a stand-alone classifier on an imbalanced dataset can be increased by using time-varying weights.
机译:本文介绍了一种基于元神经元学习的尖峰神经分类器,具有时变量模型(Mest)。在没有任何数据预处理方法的情况下,开发了Mest以处理分类问题的类别不平衡。基于Mest的Meta-Neuron学习算法使用标准化的突触后电位(全局信息)和连接的权重(本地信息)来确定灵敏度调制因子。该调制因子确定给定的一组突触前尖峰的权重更新的比例。然后将权重更新嵌入在高斯函数中以确定时变量更新。时变高斯函数的中心由突触前秒码确定。来自加州大学的10个基准数据集,欧文加州机器学习存储库的10个基准数据集进行了演示,然后应用于使用三个现实世界数据集解决信用评分。绩效研究表明,尽管有一个简单的架构,但最常规的尖刺神经网络比其他具有恒重模型的普通神经网络更好。此外,与其他非尖刺浅机器学习分类器相比,MEST是使用高度不平衡数据集进行分类的稍好的模型。这表示通过使用时变权重量可以增加独立分类器的独立分类器的可读性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号