首页> 外文期刊>Expert systems with applications >A brain-inspired information processing algorithm and its application in text classification
【24h】

A brain-inspired information processing algorithm and its application in text classification

机译:脑激发信息处理算法及其在文本分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

Cognitive scientists believe that the human brain is constantly predicting the information it is going to receive, and this prediction ability is acquired based on the experiences gained from previous information it received over its lifetime. Inspired by this brain-behavior, we propose a new information processing algorithm with the building blocks named as boxes and routes. The function of boxes is to store the learned information and the function of routes is to represent the relationship between information. The novel algorithm features generality and objectivity. It imitates the mechanism of the human brain and has functions such as information learning, comparison, prediction, and forgetting. It also has advantages in dealing with continuous time series data by using routes and high-order boxes. The algorithm is self-adaptive and unsupervised. It does not need manual intervention information to train the model. It can learn useful information from undefined data and subsequently construct a hierarchical network corresponding to the characteristics of the input information, which can be used for classification or prediction. To prove the validity of this new algorithm, a classifier is constructed based on the hierarchical network to do text classification. We select a collection of Chinese literature from 30 litterateurs as samples to train the classifier. For 10 classes situation, the optimal average accuracy of classification reaches 79.5%, which outperforms other approaches commonly used in literatures, verifying the effectiveness of the proposed algorithm.
机译:认知科学家认为,人类大​​脑不断预测它将接收的信息,并且基于从其终身收到的先前信息中获得的经验获得了这种预测能力。灵感来自这种大脑行为,我们提出了一种新的信息处理算法,其中包含作为框和路由的构建块。框的功能是存储学习信息,路由功能是表示信息之间的关系。新颖的算法具有一般性和客观性。它模仿人类大脑的机制,并具有信息学习,比较,预测和遗忘等功能。它还具有使用路由和高阶框处理连续时间序列数据的优势。算法是自适应和无人监督的。它不需要手动干预信息来训练模型。它可以从未确定的数据学习有用的信息,并随后构造与输入信息的特征对应的分层网络,其可用于分类或预测。为了证明这种新算法的有效性,基于分层网络来构造分类器以进行文本分类。我们从30次劳特国选中一系列中国文学作为样品培训分类器。对于10个阶级情况,分类的最佳平均准确性达到79.5%,这优于文献中常用的其他方法,验证了所提出的算法的有效性。

著录项

  • 来源
    《Expert systems with applications》 |2021年第9期|114828.1-114828.7|共7页
  • 作者单位

    Zhejiang Univ Sch Micronanoelect Prov Key Lab Micronano Elect & Smart Syst Hangzhou 310027 Peoples R China;

    Zhejiang Univ Sch Micronanoelect Prov Key Lab Micronano Elect & Smart Syst Hangzhou 310027 Peoples R China;

    Zhejiang Univ Sch Micronanoelect Prov Key Lab Micronano Elect & Smart Syst Hangzhou 310027 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Text classification; Machine learning; Information process;

    机译:文本分类;机器学习;信息过程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号