首页> 外文期刊>Expert systems with applications >Dynamic multi-period sparse portfolio selection model with asymmetric investors' sentiments
【24h】

Dynamic multi-period sparse portfolio selection model with asymmetric investors' sentiments

机译:不对称投资者情绪的动态多周期稀疏产品组合模型

获取原文
获取原文并翻译 | 示例

摘要

Asymmetric investors' sentiments on returns and risks play an important role in updating the portfolio strategies in multi-period portfolio selection problems. By introducing the Prospect Theory to measure the asymmetric investors' sentiments, a dynamic sentiment-adjusted model (DSAM) is proposed to sparse portfolio selection problem over multiple periods, in which the objective is to minimize the risk of the portfolio. As we focus on the sparse portfolio, a l(0) constraint is added to our model. The l(0) constraint represents that we can only purchase at most k securities from N candidate securities, in which k is a small number compared to N. Since the objective function of the sparse portfolio with l(0) constraint is NP-hard, and could not be solved by the Deep Learning algorithms. The stochastic neural networks algorithm with re-parametrisation trick (SNNrP) is introduced to solve the DSAM. The back-testing framework of our paper includes a multi-period portfolio selection model, in which asymmetric investors' sentiments are modeled to iterate investors' expected return level each period. In the back-testing framework, we conduct the experiments for different investment periods with different investors' sentiments. The experimental results for the Nasdaq and CSI 300 data sets show that, on average, compared with the traditional Mean-variance model, the terminal return and risk obtained by the DSAM model outperforms by 9% and 11.75%.
机译:不对称投资者的回报和风险的情绪在更新多期组合选择问题中的投资组合策略方面发挥着重要作用。通过介绍衡量不对称投资者情绪的前景理论,提出了一种动态的情绪调整模型(DSAM)在多个时段的稀疏产品组合选择问题中,其中目标是最大限度地减少投资组合的风险。当我们专注于稀疏产品组合时,我们的模型中添加了L(0)约束。 L(0)约束代表我们只能从N候选证券的大多数K证券购买,其中K与N相比是少量的。由于L(0)约束的稀疏产品组合的客观函数是NP - 硬,无法由深度学习算法解决。引入了具有重新参数化技巧(SNNRP)的随机神经网络算法来解决DSAM。我们文件的后卫测试框架包括一个多时期的投资组合选择模型,其中不对称投资者的情绪被建模,以迭代投资者的预期回报率。在后卫测试框架中,我们对不同投资者情绪的不同投资期进行了实验。纳斯达克和CSI 300数据集的实验结果表明,与传统的平均方差模型相比,终端返回和由DSAM模型获得的风险优于9%和11.75%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号