首页> 外文期刊>Expert systems with applications >A corrected and improved symbiotic organisms search algorithm for continuous optimization
【24h】

A corrected and improved symbiotic organisms search algorithm for continuous optimization

机译:一种校正和改进的共生生物搜索算法,用于连续优化

获取原文
获取原文并翻译 | 示例

摘要

The symbiotic organisms search (SOS) algorithm is investigated and corrected by removing the benefit factors due to their biased search around the original dot. However, the removal of these benefit factors results in performance that is far inferior to the outstanding performance of the basic SOS algorithm. Accordingly, this paper suggests adopting combination schemes for the mutualistic equations in order to prevent premature convergence, and further recommends adopting lower combination rates for parasitic equations. Combination schemes are found to be not applicable to the commensal equation, as this equation is not greedy. Therefore, this paper proposes two types of combination schemes to improve the corrected SOS version in terms of achieving high early convergence speed, attaining convergence precision at a lower cost, arriving at the convergence plateau at either a lower cost or a higher level of precision, handling tests of composition functions well, and achieving competitive performance on CEC2015 test problems.
机译:通过偏离原始点的偏见搜索,研究和纠正了共生生物搜索(SOS)算法。然而,去除这些益处因素导致比基本SOS算法的出色性能远不如劣等的性能。因此,本文提出了采用互动方程的组合方案,以防止过早收敛,并进一步建议采用寄生方程的较低组合速率。发现组合方案不适用于共生方程,因为这种方程不是贪婪。因此,本文提出了两种类型的组合方案,以提高校正的SOS版本,以实现高早期收敛速度,以较低的成本实现收敛精度,以较低的成本或更高的精度等级到达收敛高原,处理作品功能良好的测试,并实现CEC2015测试问题的竞争性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号