首页> 外文期刊>Expert systems with applications >ExEm: Expert embedding using dominating set theory with deep learning approaches
【24h】

ExEm: Expert embedding using dominating set theory with deep learning approaches

机译:exem:专家嵌入使用占主导地位理论的深入学习方法

获取原文
获取原文并翻译 | 示例

摘要

A collaborative network is a social network that is comprised of experts who cooperate with each other to fulfill a special goal. Analyzing this network yields meaningful information about the expertise of these experts and their subject areas. To perform the analysis, graph embedding techniques have emerged as an effective and promising tool. Graph embedding attempts to represent graph nodes as low-dimensional vectors. In this paper, we propose a graph embedding method, called ExEm, that uses dominating-set theory and deep learning approaches to capture node representations. ExEm finds dominating nodes of the collaborative network and constructs intelligent random walks that comprise of at least two dominating nodes. One dominating node should appear at the beginning of each path sampled to characterize the local neighborhoods. Moreover, the second dominating node reflects the global structure information. To learn the node embeddings, ExEm exploits three embedding methods including Word2vec, fastText and the concatenation of these two. The final result is the low-dimensional vectors of experts, called expert embeddings. The extracted expert embeddings can be applied to many applications. In order to extend these embeddings into the expert recommendation system, we introduce a novel strategy that uses expert vectors to calculate experts' scores and recommend experts. At the end, we conduct extensive experiments to validate the effectiveness of ExEm through assessing its performance over multi-label classification, link prediction, and recommendation tasks on common datasets and our collected data formed by crawling the vast author Scopus profiles. The experiments show that ExEm outperforms the baselines especially in dense networks.
机译:协作网络是一个社交网络,由合作彼此合作以实现特殊目标。分析该网络产生有关这些专家及其主题领域的专业知识的有意义信息。为了进行分析,图形嵌入技术已成为一种有效和有前途的工具。图形嵌入尝试将图形节点表示为低维向量。在本文中,我们提出了一个名为EXEM的图形嵌入方法,它使用主导集合理论和深度学习方法来捕获节点表示。 Exem找到了协作网络的主导节点,并构建包括至少两个主导节点的智能随机漫步。一个主导节点应该出现在每个路径的开始时,以表征本地邻域。此外,第二主导节点反映了全局结构信息。要了解节点嵌入式,Exem将利用三种嵌入方法,包括Word2Vec,FastText和这两个连接。最终结果是专家的低维向量,称为专家嵌入。提取的专家Embeddings可以应用于许多应用程序。为了将这些嵌入延伸到专家推荐系统中,我们介绍了一种新颖的战略,这些策略使用专家向量来计算专家分数并推荐专家。最后,我们通过评估其在多标签分类,链路预测和共同数据集的推荐任务以及通过爬行庞大作者Scopus简介的收集数据来验证其性能来验证exem的有效性。实验表明,exem尤其在密集的网络中表现出基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号