首页> 外文期刊>IEEE Transactions on Cognitive Communications and Networking >Open Set Wireless Transmitter Authorization: Deep Learning Approaches and Dataset Considerations
【24h】

Open Set Wireless Transmitter Authorization: Deep Learning Approaches and Dataset Considerations

机译:开放式无线发射机授权:深度学习方法和数据集考虑因素

获取原文
获取原文并翻译 | 示例

摘要

Due to imperfections in transmitters' hardware, wireless signals can be used to verify their identity in an authorization system. While deep learning was proposed for transmitter identification, existing work has mainly focused on classification among a closed set of transmitters. Malicious transmitters outside this closed set will be misclassified, jeopardizing the authorization system. In this article, we formulate the problem of recognizing authorized transmitters and rejecting new transmitters as open set recognition and anomaly detection. We consider approaches based on one and several binary classifiers, multiclass classifiers, and signal reconstruction. We study how these approaches scale with the required number of authorized transmitters. We propose using a known set of unauthorized transmitters to assist the training and study its impact. The evaluation procedure takes into consideration that some transmitters might be more similar than others and nuances these effects. The authorization's robustness against temporal changes in fingerprints is also evaluated as a function of the approach and the dataset structure. When using 10 authorized and 50 known unauthorized WiFi transmitters from a publicly accessible testbed, we were able to achieve an outlier detection accuracy of 98% on the same day test set and 80% on the different day test set.
机译:由于变送器硬件中的缺陷,无线信号可用于验证其在授权系统中的身份。虽然提出了深入学习的变送器识别,但现有的工作主要集中在封闭式发射机中的分类。此封闭式集外的恶意发射器将被错误分类,危及授权系统。在本文中,我们制定了识别授权发射机并拒绝新发射机作为开放式设定识别和异常检测的问题。我们考虑基于一个和多个二进制分类器,多字符分类器和信号重建的方法。我们研究这些方法如何使用所需的授权发射机缩放。我们建议使用一套已知的未经授权的发射机来帮助培训并研究其影响。评估程序考虑到一些发射器可能比其他发射机更相似并对这些效果进行细微差别。授权对指纹的时间变化的鲁棒性也被评估为方法和数据集结构的函数。当使用10授权和50个已知的未经授权的WiFi发射器,我们能够在同一天测试集中获得98%的异常检测精度,80%在不同的日期测试集中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号