首页> 外文期刊>Expert systems with applications >Active contour model driven by Self Organizing Maps for image segmentation
【24h】

Active contour model driven by Self Organizing Maps for image segmentation

机译:由自我组织地图驱动的活动轮廓模型,用于图像分割

获取原文
获取原文并翻译 | 示例

摘要

Supervised active contour models can use information extracted from supervised samples to guide contour evolution. However, their applicability is limited by the accuracy of the probabilistic models they use, especially when processing images with intensity inhomogeneity. In this paper, an unsupervised activity contour model with Self Organizing Maps (SOM) is proposed. The proposed model employs the self-organizing neural network to perform clustering calculation and the clustering center is called local self-organizing clustering center. An adaptive sign function is used to control the direction of curve evolution. To improve the stability of curve evolution, an improved double-well potential function is proposed. The experiment results show that our model can effectively segment images with intensity inhomogeneity.
机译:监督的主动轮廓模型可以使用从监督样本中提取的信息来引导轮廓演进。 然而,它们的适用性受他们使用的概率模型的准确性的限制,特别是当处理强度不均匀性的图像时。 在本文中,提出了一种具有自组织地图的无监督活动轮廓模型(SOM)。 所提出的模型采用自组织神经网络来执行聚类计算,群集中心称为本地自组织聚类中心。 自适应符号功能用于控制曲线演进的方向。 为了提高曲线演化的稳定性,提出了一种改进的双井电位功能。 实验结果表明,我们的模型可以有效地将图像分段为强度不均匀性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号