首页> 外文期刊>Expert systems with applications >A new portfolio selection problem in bubble condition under uncertainty: Application of Z-number theory and fuzzy neural network
【24h】

A new portfolio selection problem in bubble condition under uncertainty: Application of Z-number theory and fuzzy neural network

机译:不确定性下泡沫状况的新产品组合选择问题:Z数理论与模糊神经网络的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new mathematical formulation for a portfolio selection problem is developed. This model is based on the difference between fundamental value and market value of assets. The proposed model is especially applicable in bubble conditions. Input data of the developed model are subjected to uncertainty. To consider data uncertainty, the Z-number theory is employed. Additionally, a fuzzy neural network is used to predict market value of assets in different economic conditions as input data of the developed model. To show advantages of the proposed model, its results are compared to the mean absolute deviation (MAD), Conditional Value at Risk (CVaR), and Value at Risk (VaR). Results show that the deterministic formulation of proposed model performs better than MAD, CVaR, and VaR in bubble condition. Moreover, fuzzy formulations of all mentioned models perform better than their deterministic formulations in terms of capturing risk of a bubble. Finally, results illustrate that application of the Z-number theory in the proposed model makes the new portfolio selection problem reliable in bubble condition with respect to calculating risk of bubble bursting and proposing the best portfolio among all deterministic and nondeterministic formulations in bubble conditions.
机译:在本文中,为投资组合选择问题,一个新的数学公式开发。这个模型是基于基本价值和资产的市场价值之间的差额。该模型是特别适用于气泡的条件。开发的模型输入数据进行的不确定性。要考虑数据的不确定性,Z-数论采用。此外,模糊神经网络被用于预测不同经济条件的发展模式的输入数据资产的市场价值。要显示该模型的优点,其结果相比,平均绝对偏差(MAD),条件风险价值(CVaR的),以及风险价值(VAR)。结果表明,该模型进行比MAD,CVaR的和var中气泡状态更好的确定性制剂。此外,上述所有型号的模糊配方捕捉泡沫的风险方面表现比他们的确定性配方更好。最后,结果表明,在该模型的Z-数论的应用使得新的投资组合选择问题,在气泡状态可靠相对于计算的泡沫破灭,并提出在泡沫条件下,所有的确定性和不确定性的配方中最好的投资组合的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号