首页> 外文期刊>Expert systems with applications >Evaluation of text summaries without human references based on the linear optimization of content metrics using a genetic algorithm
【24h】

Evaluation of text summaries without human references based on the linear optimization of content metrics using a genetic algorithm

机译:基于使用遗传算法的内容度量线性优化的基于内容度量的线性优化评估文本摘要

获取原文
获取原文并翻译 | 示例

摘要

The Evaluation of Text Summaries (ETS) has been a task of constant challenges to the development of Automatic Text Summarization (ATS). Within the ATS task, the ETS is crucial to determine the performance of text summaries. Over the last two decades, the scientific community has used the ROUGE system as a standard package to assess the content of automatic summaries. However, if there are not human-made summaries (called human references), then the evaluation cannot be carried out. For this reason, the different state-of-the-art evaluation methods have been proposed that analyze the summary content using the source documents. Nonetheless, these methods do not highly correlate with human assessment. In this paper, a linear optimization of content-based metrics is proposed using a Genetic Algorithm (GA) to improve the correlation between automatic and manual evaluation. The proposed method combines 31 content metrics based on the evaluation without human references. The results of the linear optimization show correlation improvements concerning other evaluation metrics on DUC01 and DUC02 datasets.
机译:对文本摘要(ETS)的评估一直是对自动文本摘要(ATS)的发展不断挑战的任务。在ATS任务中,ETS至关重要,以确定文本摘要的性能。在过去二十年中,科学界已经使用胭脂系统作为标准套餐,以评估自动摘要的内容。但是,如果没有人为摘要(称为人参考),则无法进行评估。因此,已经提出了使用源文档分析摘要内容的不同最先进的评估方法。尽管如此,这些方法与人类评估不高度相关。本文采用遗传算法(GA)提出了基于内容基度量的线性优化,以提高自动和手动评估之间的相关性。该方法基于没有人参考的评估组合了31个内容度量。线性优化结果显示了关于DUC01和DUC02数据集的其他评估度量的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号