首页> 外文期刊>Data & Knowledge Engineering >SummTriver: A new trivergent model to evaluate summaries automatically without human references
【24h】

SummTriver: A new trivergent model to evaluate summaries automatically without human references

机译:SummTriver:一种新的trivergent模型,无需人工引用即可自动评估汇总

获取原文
获取原文并翻译 | 示例

摘要

The automatic evaluation of summaries is a hard task that continues to be open. The assessment aims to measure simultaneously the informativeness and readability of summaries. The scientific community has tackled this problem with partial solutions, in terms of informativeness, using ROUGE. However, to use this method, it is necessary to have multiple summaries made by humans (the references). Methods without human references have been implemented, but there are still far from being highly correlated to manual evaluations. In this paper we present SummTriver, an automatic evaluation method that tries to be more correlated to manual evaluation by using multiple divergences. The results are promising, especially for summarization campaigns. Besides this, we also present an interesting analysis, at micro-level, of how correlated the manual and automatic summaries evaluation methods are, when we make use of a large quantity of observations.
机译:摘要的自动评估是一项艰巨的任务,仍在继续。评估旨在同时测量摘要的信息性和可读性。科学界已经使用ROUGE在信息方面提供了部分解决方案来解决此问题。但是,要使用此方法,必须由人类(参考文献)做出多个摘要。没有人引用的方法已经被实现,但是与人工评估还没有高度关联。在本文中,我们介绍了SummTriver,这是一种自动评估方法,该方法试图通过使用多个差异来与手动评估更相关。结果是有希望的,特别是对于总结运动。除此之外,当我们使用大量观察值时,我们还从微观层面对手动和自动摘要评估方法之间的相关性进行了有趣的分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号