首页> 外文期刊>Expert systems with applications >A clustering based Swarm Intelligence optimization technique for the Internet of Medical Things
【24h】

A clustering based Swarm Intelligence optimization technique for the Internet of Medical Things

机译:基于集群的医学互联网互联智能优化技术

获取原文
获取原文并翻译 | 示例

摘要

Internet of Medical Things (IoMT) is a recently introduced paradigm which has gained relevance as an emerging technology for widely connected and heterogeneous networks. In the medical context, these networks involve many different processes run by different types of devices called objects that interact and collaborate to achieve a common goal (e.g, diagnosis, treatment, monitoring, or rehabilitation of a patient). An IoMT framework in a smart healthcare system dynamically monitors patients to respond to their assistance demands so that vital signs of critical or unusual cases can be uncovered based on the collected data. To this end, an effective technique called SIoMT (Swarm Intelligence optimization technique for the IoMT) is proposed in this paper for periodically discovering, clustering, analyzing, and managing useful data about potential patients. Notably, the SIoMT technique is widely used with distributed nodes for analyzing and managing data groups. Different from the existing clustering algorithms, SIoMT performs clustering based on the characteristics and distance between objects or swarms. More specifically, these data are collected and grouped, in early stage, using a clustering approach inspired by the Bee Colony Optimization algorithm (BCO), adopting some standard quality measures which helped minimizing the latency and required computational cost. To test the performance of the proposed SIoMT, one public dataset (Ward2ICU) was considered from the online source. Various experiments were done to analyze the effects of different parameters on the proposed SIoMT?s performance, and the results from the final variant of the proposed algorithm were compared against different variants of the same algorithm with different clustering algorithms and different optimization algorithms. Subsequently, after analyzing different components by solving various IoMT datasets, the capability and the superiority of the proposed SIoMT approach is wellestablished among its competitive counterparts.
机译:医学互联网(IOMT)是最近引入的范式,这是作为广泛连接和异构网络的新兴技术获得相关性的相关性。在医学背景中,这些网络涉及许多不同类型的不同流程,这些过程由不同类型的设备运行,称为对象的交互和协作以实现常见目标(例如,患者的诊断,治疗,监测或康复)。智能医疗保健系统中的IOMT框架动态监测患者以应对他们的援助要求,以便根据所收集的数据揭示关键或不寻常案件的生命迹象。为此,本文提出了一种称为SIOMT(IOMT的Sharm智能优化技术的有效技术,用于定期发现,聚类,分析和管理有关潜在患者的有用数据。值得注意的是,SIOMT技术广泛用于分布式节点,用于分析和管理数据组。与现有的聚类算法不同,SIOMT根据对象或群体之间的特征和距离执行群集。更具体地说,这些数据在早期收集和分组,在早期使用受蜂菌落优化算法(BCO)的集群方法,采用一些标准质量措施,这有助于最小化延迟和所需的计算成本。要测试所提出的SIOMT的性能,从在线来源考虑了一个公共数据集(WARD2ICU)。完成各种实验以分析不同参数对所提出的SIOMTΔS性能的影响,并将所提出的算法的最终变体的结果与不同聚类算法的不同算法和不同优化算法的不同变体进行比较。随后,通过求解各种IOMT数据集来分析不同的组分,在其竞争对手的同行中,拟议的SIOMT方法的能力和优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号