首页> 外文期刊>Expert systems with applications >DENS-ECG: A deep learning approach for ECG signal delineation
【24h】

DENS-ECG: A deep learning approach for ECG signal delineation

机译:DENS-ECG:ECG信号描绘的深度学习方法

获取原文
获取原文并翻译 | 示例

摘要

Objectives: With the technological advancements in the field of tele-health monitoring, it is now possible to gather huge amount of electro-physiological signals such as the electrocardiogram (ECG). It is therefore necessary to develop models/algorithms that are capable of analysing these massive amount of data in real-time. This paper proposes a deep learning model for real-time segmentation of heartbeats.Methods: The proposed DENS-ECG algorithm, combines convolutional neural network (CNN) and long short-term memory (LSTM) model to detect onset, peak, and offset of different heartbeat waveforms such as the P-waves, QRS complexes, T-waves, and No waves (NW). Using ECG as the inputs, the model learns to extract high level features through the training process, which, unlike other classical machine learning based methods, eliminates the feature engineering step.Results: The proposed DENS-ECG model was trained and validated on a dataset with 105 ECG records of length 15 min each and achieved an average sensitivity and precision of 97.95% and 95.68%, respectively, using a stratified 5-fold cross validation. Additionally, the model was evaluated on an unseen dataset to examine its robustness in QRS detection, which resulted in a sensitivity of 99.61% and precision of 99.52%.Conclusion: The empirical results show the flexibility and accuracy of the combined CNN-LSTM model for ECG signal delineation. Significance: This paper proposes an efficient and easy to use approach using deep learning for heartbeat segmentation, which could potentially be used in real-time tele-health monitoring systems.
机译:目的:随着远程健康监测领域的技术进步,现在可以收集大量的电生理信号,例如心电图(ECG)。因此,有必要开发能够实际分析这些大量数据的模型/算法。本文提出了对心跳实时分割的深度学习模型。方法:所提出的DENS-ECG算法,将卷积神经网络(CNN)和长短期内存(LSTM)模型结合到检测开始,峰值和偏移不同的心跳波形,如p波,QRS复合物,T-Waves,以及没有波(NW)。使用ECG作为输入,该模型学会通过培训过程提取高级功能,与其他基于经典机器学习的方法不同,消除了特征工程步骤。结果:培训拟议的DENS-ECG模型并在数据集上验证并验证每次105个ECG记录的长度为15分钟,并使用分层5倍交叉验证,分别实现了97.95%和95.68%的平均灵敏度和95.68%。另外,在看不见的数据集上评估模型,以检查其在QRS检测中的鲁棒性,导致灵敏度为99.61%和99.52%的精度。结论:经验结果表明了CNN-LSTM模型的灵活性和准确性ECG信号描绘。意义:本文提出了一种利用深度学习对心跳细分的高效易用的方法,这可能是在实时远程健康监测系统中使用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号