首页> 外文期刊>Expert systems with applications >Utilizing historical data for corporate credit rating assessment
【24h】

Utilizing historical data for corporate credit rating assessment

机译:利用公司信用评级评估的历史数据

获取原文
获取原文并翻译 | 示例

摘要

Corporate credit rating assessment is one of the crucial problems of credit risk management; it will help the financial institutions and government decide whether to issue debts. Recent studies focusing on the prediction of credit rating by using artificial intelligence (AI) techniques have shown impressive results compared to traditional statistical methods. Although the AI techniques can be used to assess credit risk, the prediction accuracy is still worth improving further, as even a small improvement in credit rating prediction accuracy leads to significant loss reduction in the industry. In this paper, we propose new learning analytic methods to enhance the prediction accuracy of credit rating. First, we devise the metrics based on the credit rating history of the firms, and expand the feature space with new input variables. This approach can be applied to any conventional AI methods for improvement of prediction accuracy. Second, we develop a novel learning algorithm that is designed to take into account historical financial data. We propose the parallel artificial neural networks (PANNs) ensemble model that creates several independent artificial neural networks (ANNs); each ANN deals with financial performance of the firms for each year, and the final output of PANNs is aggregated by ensemble learning. In our experiment, three different real-world datasets are used to validate the performance of our proposed approach. Consequently, the experimental results show that our proposed approach achieved competitive results compared to conventional AI techniques.
机译:企业信用评级评估是信用风险管理的关键问题之一;它将有助于金融机构和政府决定是否发布债务。与使用人工智能(AI)技术相比,近期专注于使用人工智能(AI)技术的预测的研究表明了令人印象深刻的结果。尽管AI技术可用于评估信用风险,但预测精度仍然值得进一步改善,因为即使信用评级预测准确性的少量提高也会导致业界的显着降低。在本文中,我们提出了新的学习分析方法来增强信用评级的预测准确性。首先,我们根据公司的信用评级历史记录设计指标,并使用新的输入变量扩展功能空间。这种方法可以应用于任何传统的AI方法,以改善预测精度。其次,我们开发了一种新颖的学习算法,旨在考虑历史财务数据。我们提出了并行人工神经网络(Panns)集合模型,创建了几个独立的人工神经网络(ANNS);每个ANG每年都有公司的财务表现,并且PANNS的最终产出由集成学习汇总。在我们的实验中,三种不同的现实数据集用于验证我们提出的方法的性能。因此,实验结果表明,与常规AI技术相比,我们所提出的方法实现了竞争结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号