首页> 外文期刊>Expert systems with applications >Fuzzy logic aggregation of crisp data partitions as learning analytics in triage decisions
【24h】

Fuzzy logic aggregation of crisp data partitions as learning analytics in triage decisions

机译:CRISP数据分区的模糊逻辑聚合作为分类决策的学习分析

获取原文
获取原文并翻译 | 示例

摘要

This paper provides an analytical learning system based on Fuzzy Logic AGgregation (FLAG) of crisp data partitions to improve the Triage process in a hospitality emergency department. The method compares patient rankings made by nurses with those made by an Expert to detect points for improvement. Specifically, a normalized concordance index per nurse and the average of them allow for the evaluation of the ability of the nurses of well aggregating the cases in Triage process. The proposed FLAG system is tested through an empirical case study by simulating the patients arriving at two Emergency Departments Triage. The main contribution is the definition of the global performance index combining both the nurse's partitioning concordance with respect to the Expert's one and the accuracy in class assignment. The empirical distribution function of the global concordance index is derived through permutation method. In this way, Kolmogorov-Smirnov testing provides the comparison of the performances of the two healthcare units. The pay-off table concordance-accuracy allows to address improvement actions. Another tool of the system is the correspondence analysis to visualize the accuracy of decisions on the class priority as well as the sharing behaviours that influence the nurse's judgements. All this becomes part of the FLAG learning analytics system which is able to outline critical points by red flags. to improve further assignments and the overall management organization. FLAG system can be adapted in all other situations of risk where cognitive heuristics face an accuracy-effort trade-off such that their simplified decision process leads to reduced accuracy. (c) 2020 Elsevier Ltd. All rights reserved.
机译:本文提供了一种基于CRISP数据分区模糊逻辑聚合(标志)的分析学习系统,以改善酒店急诊部的分类过程。该方法将护士与专家制作的患者排名进行比较,以检测改进点。具体而言,每个护士的规范化的一致性指数和它们的平均值允许评估护理良好聚集过程中的病例的能力。通过模拟抵达两个急诊部门的患者来测试所提出的标志系统通过经验研究。主要贡献是全球性能指数的定义,将护士分区的分区和专家的一个和课堂分配的准确性相结合。通过置换方法导出全局协调索引的经验分布函数。通过这种方式,Kolmogorov-Smirnov测试提供了两种医疗单位的性能的比较。 COUNT-OFF表协调 - 准确性允许解决改进行动。该系统的另一个工具是对应分析,以可视化类优先级的决策的准确性以及影响护士判断的共享行为。所有这些都成为国旗学习分析系统的一部分,可以通过红旗概述关键点。改进进一步的作业和整体管理组织。标志系统可以适用于认知启发式攻击精度折衷的所有其他风险的情况,使其简化的决策过程导致精度降低。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号