首页> 外文期刊>Expert systems with applications >NN-SSTA: A deep neural network approach for statistical static timing analysis
【24h】

NN-SSTA: A deep neural network approach for statistical static timing analysis

机译:NN-SSTA:一种深度神经网络方法,用于统计静态定时分析

获取原文
获取原文并翻译 | 示例

摘要

Discrete statistical static timing analysis (SSTA) performs the timing analysis by using statistical maximum and convolution operations. The maximum is basically a non-linear operator and it is not a simple task to capture the skewness introduced by it. On the other hand, the convolution has a potential to "blow-up" the number of discrete samples as we going deep inside the timing graph and hence, results in exponential timing complexity. Therefore, in this paper we present novel deep neural network based operations which can accurately approximate the signal arrival-time's distributions with linear-time complexity. The various deep neural network (DNN) architectures have been used to implement both the maximum and the convolution operations using proper training dataset. Simulation results on various benchmark circuits (ISCAS 85, ISCAS 89, and ITC 99) show that the proposed method estimate the mean and standard deviation (STD) of critical path delay distribution with an average error of 0.75% and 2.56% as compared to Monte Carlo (MC), respectively. Our SSTA speeds up the traditional discrete approach by a factor of 20.7x on average. Furthermore, the PDF obtained from our method matches the ones obtained from MC with a reasonable error. Furthermore, we have proposed multi-wise maximum operations to reduce the arrival-time computational complexity at multi-inputs gates. Comparing to MC, the proposed method shows 0.97% and 2.58% average error in mean and STD respectively and the speeding up factor reaches 24.4x on average for all benchmarks. (C) 2020 Elsevier Ltd. All rights reserved.
机译:离散统计静态定时分析(SSTA)通过使用统计最大和卷积操作来执行定时分析。最大值基本上是非线性运算符,并且它不是一个简单的任务,可以捕获它引入的偏振。另一方面,随着我们在定时图中深入的情况下,卷积具有“吹出”分立样本的数量,从而导致指数正时复杂性。因此,在本文中,我们提出了新的深度神经网络的作业,该操作可以准确地近似于线性时间复杂度的信号到达时间的分布。各种深神经网络(DNN)架构已被用于使用适当的训练数据集来实现最大和卷积操作。各种基准电路(ISCAS 85,ISCAS 89和ITC 99)的仿真结果表明,与Monte相比,所提出的方法估计关键路径延迟分布的平均值和标准偏差(STD),平均误差为0.75%和2.56%卡洛(MC)分别。我们的SSTA平均将传统的离散方法加速20.7倍。此外,从我们的方法获得的PDF匹配从MC获得的具有合理误差。此外,我们已经提出了多功能的最大操作,以降低多输入门的到达时间计算复杂性。比较MC,所提出的方法分别显示了平均值和STD的平均误差0.97%和2.58%,并且对于所有基准,平均增速因子达到24.4倍。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号