首页> 外文期刊>Expert systems with applications >An aggregative learning gravitational search algorithm with self-adaptive gravitational constants
【24h】

An aggregative learning gravitational search algorithm with self-adaptive gravitational constants

机译:具有自适应重力常数的聚合学习重力搜索算法

获取原文
获取原文并翻译 | 示例

摘要

The gravitational search algorithm (GSA) is a meta-heuristic algorithm based on the theory of Newtonian gravity. This algorithm uses the gravitational forces among individuals to move their positions in order to find a solution to optimization problems. Many studies indicate that the GSA is an effective algorithm, but in some cases, it still suffers from low search performance and premature convergence. To alleviate these issues of the GSA, an aggregative learning GSA called the ALGSA is proposed with a self-adaptive gravitational constant in which each individual possesses its own gravitational constant to improve the search performance. The proposed algorithm is compared with some existing variants of the GSA on the IEEE CEC2017 benchmark test functions to validate its search performance. Moreover, the ALGSA is also tested on neural network optimization to further verify its effectiveness. Finally, the time complexity of the ALGSA is analyzed to clarify its search performance. (C) 2020 Elsevier Ltd. All rights reserved.
机译:引力搜索算法(GSA)是基于牛顿重力理论的元启发式算法。该算法使用个人之间的重力来移动其位置,以便找到优化问题的解决方案。许多研究表明,GSA是一种有效的算法,但在某些情况下,它仍然存在低搜索性能和早产的趋同。为了缓解GSA的这些问题,提出了一种称为ALGSA的聚合学习GSA,其具有自适应重力常数,其中每个单独的具有其自身的重力常数以改善搜索性能。将所提出的算法与IEEE CEC2017基准测试函数上的GSA的一些现有变体进行比较,以验证其搜索性能。此外,ALGSA还测试了神经网络优化,以进一步验证其有效性。最后,分析了ALGSA的时间复杂性以阐明其搜索性能。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号