首页> 外文OA文献 >Adaptive Switching Gravitational Search Algorithm: An Attempt To Improve Diversity Of Gravitational Search Algorithm Through Its Iteration Strategy
【2h】

Adaptive Switching Gravitational Search Algorithm: An Attempt To Improve Diversity Of Gravitational Search Algorithm Through Its Iteration Strategy

机译:自适应切换引力搜索算法:尝试通过其迭代策略提高引力搜索算法的多样性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An adaptive gravitational search algorithm (GSA) that switches between synchronous and asynchronous update is presented in this work. The proposed adaptive switching synchronous–asynchronous GSA (ASw-GSA) improves GSA through manipulation of its iteration strategy. The iteration strategy is switched from synchronous to asynchronous update and vice versa. The switching is conducted so that the population is adaptively switched between convergence and divergence. Synchronous update allows convergence, while switching to asynchronous update causes disruption to the population’s convergence. The ASw-GSA agents switch their iteration strategy when the best found solution is not improved after a period of time. The period is based on a switching threshold. The threshold determines how soon is the switching, and also the frequency of switching in ASw-GSA. ASw-GSA has been comprehensively evaluated based on CEC2014’s benchmark functions. The effect of the switching threshold has been studied and it is found that, in comparison with multiple and early switches, one-time switching towards the end of the search is better and substantially enhances the performance of ASw-GSA. The proposed ASw-GSA is also compared to original GSA, particle swarm optimization (PSO), genetic algorithm (GA), bat-inspired algorithm (BA) and grey wolf optimizer (GWO). The statistical analysis results show that ASw-GSA performs significantly better than GA and BA and as well as PSO, the original GSA and GWO.12
机译:在这项工作中提出了一种在同步更新和异步更新之间切换的自适应重力搜索算法(GSA)。提议的自适应切换同步-异步GSA(ASw-GSA)通过操纵其迭代策略来改进GSA。迭代策略从同步更新切换到异步更新,反之亦然。进行切换,以便总体在收敛和发散之间进行自适应切换。同步更新允许收敛,而切换到异步更新则会破坏总体的收敛。如果经过一段时间未找到最佳解决方案,则ASw-GSA代理会切换其迭代策略。该时间段基于切换阈值。该阈值确定切换的时间,以及ASw-GSA中的切换频率。 ASw-GSA已根据CEC2014的基准功能进行了全面评估。已经研究了切换阈值的影响,并且发现,与多次和早期切换相比,朝搜索结尾的一次性切换更好,并且大大增强了ASw-GSA的性能。还将拟议的ASw-GSA与原始GSA,粒子群优化(PSO),遗传算法(GA),蝙蝠启发算法(BA)和灰狼优化器(GWO)进行了比较。统计分析结果表明,ASw-GSA的性能明显优于GA和BA以及PSO,原始GSA和GWO.12。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号