首页> 外文期刊>Expert systems with applications >Novel evolutionary multi-objective soft subspace clustering algorithm for credit risk assessment
【24h】

Novel evolutionary multi-objective soft subspace clustering algorithm for credit risk assessment

机译:信用风险评估的新型进化多目标软子空间聚类算法

获取原文
获取原文并翻译 | 示例

摘要

The financial liberalization and globalization have increased the need for expert and intelligent systems to deal with credit risk management works. Clustering algorithms are widely used for knowledge acquisition in such systems to assess the credit risk from a data point of view. Conventional clustering algorithms fall short in credit risk assessment because credit datasets are typically high-dimensional, class-imbalanced, and with large sample size. To address these problems, this paper proposes a novel evolutionary multi-objective soft subspace clustering (EMOSSC) algorithm for credit risk assessment. Firstly, we develop a soft subspace clustering validity index for credit risk assessment, by which we can detect the underlying subspace for each cluster from the entire high-dimensional feature space, and we also incorporate the weight of each cluster and the between-cluster separation into the clustering validity index to obtain a comprehensive data structure in the clustering process. Secondly, we propose to optimize the clustering criteria of the new clustering validity index simultaneously by a multi-objective evolutionary algorithm without any predefined weighting coefficients, which guarantees the robustness of the algorithm. We also further provide a local search strategy which significantly accelerates the convergence of the algorithm. Thirdly, we design a GPU-based parallel computation framework for updating the weights of features in our proposed algorithm to improve the computational efficiency on credit datasets with large sample size. Finally, we conduct a comprehensive experiment, with its results demonstrate the superiority of our proposed algorithm in credit risk assessment. (C) 2019 Elsevier Ltd. All rights reserved.
机译:金融自由化和全球化增加了对专家和智能系统的需求,以处理信用风险管理工作。聚类算法广泛用于这些系统中的知识获取,以评估数据观点的信用风险。传统的聚类算法在信用风险评估中缺少,因为信用数据集通常是高维,类 - 不平衡,并且具有大的样本大小。为了解决这些问题,本文提出了一种新的进化多目标软子空间聚类(Emossc)算法,用于信用风险评估。首先,我们开发了一种软子空间聚类有效性索引,用于信用风险评估,我们可以从整个高维特征空间中检测每个群集的底层子空间,我们还包含每个群集的权重以及群集分离之间的权重进入聚类有效性索引,以在群集过程中获取全面的数据结构。其次,我们建议通过多目标进化算法同时优化新聚类有效性指数的聚类标准,而没有任何预定义的加权系数,这保证了算法的鲁棒性。我们还进一步提供了一个本地搜索策略,可显着加速算法的收敛性。第三,我们设计了一种基于GPU的并行计算框架,用于更新我们所提出的算法中的特征权重,以提高具有大样本大小的信用数据集的计算效率。最后,我们进行了全面的实验,其结果表明了我们所提出的信用风险评估算法的优越性。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号