首页> 外文期刊>Expert systems with applications >Hybrid simulated annealing and tabu search method for the electric travelling salesman problem with time windows and mixed charging rates
【24h】

Hybrid simulated annealing and tabu search method for the electric travelling salesman problem with time windows and mixed charging rates

机译:Hybrid模拟退火和禁忌搜索方法,为电动旅行推销员问题与时间窗口和混合充电率

获取原文
获取原文并翻译 | 示例

摘要

The electric travelling salesman problem with time windows (ETSPTW) is an extension of the well-known travelling salesman problem with time windows (TSPTW). The ETSPTW additionally considers recharging operations of the electric vehicle at identical charging stations. However, different charging technologies used at public or private stations result in different charging times of the electric vehicles. Therefore, this study extends the ETSPTW by additionally considering charging operations at customer locations with different charging rates, called hereafter the electric travelling salesman problem with time windows and mixed charging rates (ETSPTW-MCR). To the best of our knowledge, this is the first study that considers both private and public charging stations for the ETSPTW. In addition to the extended version of the ETSPTW, this paper introduces a new and effective hybrid Simulated Annealing/Tabu Search (SA/TS) algorithm to solve the ETSPTW-MCR problem efficiently. Distinct from the existing hybridization of SA and TS, the proposed hybrid SA/TS algorithm employs efficient search procedures based on the TSPTW restrictions, a modified solution acceptance criterion, and an advanced tabu list structure. Moreover, an improved dynamic programming procedure is integrated to optimally find the charging station visits in shorter computational times. The proposed hybrid SA/TS is tested on several TSPTW and ETSPTW benchmark problems and compared with well-known solution approaches. Results of these experiments show that the proposed algorithm outperforms the other considered competitor algorithms both with regard to solution quality and computational time. Furthermore, 26 new best results are obtained for the ETSPTW instances. In addition, the hybrid algorithm is applied to a new problem set generated for the ETSPTW-MCR by extending the ETSPTW problems found in the literature. Comparisons with the ETSPTW results show that significant distance savings are found for most of the instances by charging the electric vehicle at customer locations. As a result of the computational studies, it should be concluded that the proposed algorithm is capable of finding efficient and more realistic route plans for the electric vehicles. (C) 2019 Elsevier Ltd. All rights reserved.
机译:带时间窗口(etsptw)的电动旅行推销员问题是众所周知的旅行推销员问题与时间窗口(TSPTW)的延伸。 ETSPTW另外考虑在相同的充电站处的电动车辆的充电操作。然而,公共汽车或私人站使用的不同充电技术导致电动车辆的不同充电时间。因此,本研究通过另外考虑具有不同充电率的客户位置的充电操作扩展了ETSPTW,以下称为时间窗口和混合充电率(ETSPTW-MCR)的电动旅行推销员问题。据我们所知,这是第一项考虑etsptw的私人和公共收费站的研究。除了ETSPTW的扩展版本外,本文还介绍了一种新的和有效的混合模拟退火/禁止曲线搜索(SA / TS)算法,可以有效地解决ETSPTW-MCR问题。不同于SA和TS的现有杂交,所提出的混合SA / TS算法基于TSPTW限制,修改的解决方案验收标准和高级禁忌列表结构采用有效的搜索过程。此外,集成了改进的动态编程过程,以最佳地找到计数器站访问较短的计算时间。所提出的Hybrid SA / TS在几个TSPTW和ETSPTW基准问题上进行测试,并与众所周知的解决方案方法进行比较。这些实验的结果表明,该算法在溶液质量和计算时间方面占据了另一种考虑的竞争对手算法。此外,为etsptw实例获得了26个新的最佳结果。另外,通过扩展文献中发现的ETSPTW问题,将混合算法应用于ETSPTW-MCR生成的新问题集。与etsptw结果的比较表明,通过在客户位置对电动车辆充电来找到大部分情况的大部分情况。由于计算研究,应该得出结论,该算法能够找到电动车辆的有效和更现实的路线计划。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号