首页> 外文期刊>Expert Systems with Application >Hybrid simulated annealing and tabu search method for the electric travelling salesman problem with time windows and mixed charging rates
【24h】

Hybrid simulated annealing and tabu search method for the electric travelling salesman problem with time windows and mixed charging rates

机译:具有时间窗和混合充电率的电动旅行商问题的混合模拟退火禁忌搜索方法

获取原文
获取原文并翻译 | 示例

摘要

The electric travelling salesman problem with time windows (ETSPTW) is an extension of the well-known travelling salesman problem with time windows (TSPTW). The ETSPTW additionally considers recharging operations of the electric vehicle at identical charging stations. However, different charging technologies used at public or private stations result in different charging times of the electric vehicles. Therefore, this study extends the ETSPTW by additionally considering charging operations at customer locations with different charging rates, called hereafter the electric travelling salesman problem with time windows and mixed charging rates (ETSPTW-MCR). To the best of our knowledge, this is the first study that considers both private and public charging stations for the ETSPTW. In addition to the extended version of the ETSPTW, this paper introduces a new and effective hybrid Simulated Annealing/Tabu Search (SA/TS) algorithm to solve the ETSPTW-MCR problem efficiently. Distinct from the existing hybridization of SA and TS, the proposed hybrid SA/TS algorithm employs efficient search procedures based on the TSPTW restrictions, a modified solution acceptance criterion, and an advanced tabu list structure. Moreover, an improved dynamic programming procedure is integrated to optimally find the charging station visits in shorter computational times. The proposed hybrid SA/TS is tested on several TSPTW and ETSPTW benchmark problems and compared with well-known solution approaches. Results of these experiments show that the proposed algorithm outperforms the other considered competitor algorithms both with regard to solution quality and computational time. Furthermore, 26 new best results are obtained for the ETSPTW instances. In addition, the hybrid algorithm is applied to a new problem set generated for the ETSPTW-MCR by extending the ETSPTW problems found in the literature. Comparisons with the ETSPTW results show that significant distance savings are found for most of the instances by charging the electric vehicle at customer locations. As a result of the computational studies, it should be concluded that the proposed algorithm is capable of finding efficient and more realistic route plans for the electric vehicles. (C) 2019 Elsevier Ltd. All rights reserved.
机译:带时间窗的电动旅行推销员问题(ETSPTW)是著名的带时间窗的旅行推销员问题(TSPTW)的扩展。 ETSPTW还考虑在相同的充电站对电动汽车进行充电操作。然而,在公共或私人站点使用的不同充电技术导致电动车辆的不同充电时间。因此,本研究扩展了ETSPTW,方法是另外考虑具有不同充电率的客户位置的充电操作,此后称为带时间窗和混合充电率的电动旅行推销员问题(ETSPTW-MCR)。据我们所知,这是第一个同时考虑ETSPTW的私人和公共充电站的研究。除了扩展版的ETSPTW-MCR问题之外,本文还介绍了一种新的有效的模拟退火/塔布搜索(SA / TS)混合算法。与现有的SA和TS混合不同,提出的混合SA / TS算法采用基于TSPTW限制,修改后的解决方案接受标准和高级禁忌列表结构的有效搜索过程。此外,集成了一种改进的动态编程程序,可以在较短的计算时间内最佳地找到充电站访问次数。拟议的混合SA / TS在多个TSPTW和ETSPTW基准问题上进行了测试,并与众所周知的解决方案进行了比较。这些实验的结果表明,无论是在解决方案质量还是在计算时间上,该算法均优于其他竞争对手的算法。此外,针对ETSPTW实例获得了26个新的最佳结果。此外,通过扩展文献中发现的ETSPTW问题,将混合算法应用于为ETSPTW-MCR生成的新问题集。与ETSPTW结果的比较表明,在大多数情况下,都可以通过在客户所在地为电动汽车充电来节省大量距离。作为计算研究的结果,应该得出的结论是,所提出的算法能够为电动汽车找到有效且更现实的路线计划。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号