首页> 外文期刊>Expert systems with applications >Hyperspectral imagery classification based on semi-supervised 3-D deep neural network and adaptive band selection
【24h】

Hyperspectral imagery classification based on semi-supervised 3-D deep neural network and adaptive band selection

机译:基于半监控3-D深神经网络和自适应频段选择的高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel approach based on adaptive dimensionality reduction (ADR) and a semi supervised 3-D convolutional neural network (3-D CNN) for the spectro-spatial classification of hyper spectral images (HSIs). It tackles the problem of curse of dimensionality and the limited number of training samples by selecting the most relevant spectral bands. The selected bands should be informative, discriminative and distinctive. They are fed into a semi-supervised 3-D CNN feature extractor, then a linear regression classifier to produce the classification map. In fact, the proposed semi-supervised 3-D CNN model seeks to extract the deep spectral and spatial features based on convolutional encoder-decoder to enhance the HSI classification. It uses several 3-D convolution and max-pooling layers to extract these features from the selected relevant bands. The main advantage of the proposed approach is to reduce the high dimensionality of HSI, preserve the relevant spectro-spatial information and enhance the classification using few labeled training samples. Experimental studies are carried out on three real HSI data sets: Indian Pines, Pavia University, and Salinas. The obtained results show that the proposed approach performs better than other deep learning-based methods including CNN-based methods, and significantly improves the classification accuracy of HSIs. (C) 2019 Elsevier Ltd. All rights reserved.
机译:本文提出了一种基于自适应维度减少(ADR)的新方法,以及用于超谱图像(HSIS)的光谱空间分类的半监控3-D卷积神经网络(3-D CNN)。通过选择最相关的光谱带,它通过选择最多的频谱来解决维度的诅咒和有限数量的训练样本问题。所选择的乐队应该是信息性的,歧视和独特的。它们被馈入半监控的3-D CNN特征提取器,然后是线性回归分类器以产生分类映射。实际上,所提出的半监督3-D CNN模型试图基于卷积编码器解码器提取深度光谱和空间特征,以增强HSI分类。它使用多个三维卷积和最大池层,以从所选相关频段提取这些功能。所提出的方法的主要优点是降低HSI的高维度,保留相关的光谱空间信息,并使用少数标记的训练样本增强分类。实验研究是在三个真实的HSI数据集中进行:印度松树,帕维亚大学和萨利纳斯。所获得的结果表明,该方法比其他基于深度学习的方法更好地表现出基于CNN的方法,并显着提高了HSI的分类精度。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号