首页> 外文期刊>Expert systems with applications >Towards fast and parameter-independent support vector data description for image and video segmentation
【24h】

Towards fast and parameter-independent support vector data description for image and video segmentation

机译:朝向快速和参数无关的支持矢量数据描述,用于图像和视频分段

获取原文
获取原文并翻译 | 示例

摘要

Machine learning has become a pillar of today's expert and intelligent systems where a special attention has been drawn to unsupervised methods. Support vector data description is one of the most interesting methods proposed in this context that addresses two main challenges: the absence of ground truth labels and the presence of outliers in data. It is well known that the ultimate problem has a great impact on a system performance since it typically prevents and limits its generalization and hence its failure. Even though the strengths of the Support vector data description method, its application into multi class and large scale context, as computer vision systems, raises bottleneck issues due to its runtime complexity and mono-class context application. We propose, in this paper, an approach inspired from the movement behavior of particle swarm and relies on the use of core set paradigm to overcome the aforementioned drawbacks of Support vector data description method. Indeed, since the proposed method uses some parameters corresponding to kernel function and swarm's movement formulation, we present and study in this paper some strategies to ensure a dynamic adaptation of these parameters. The main qualities of the proposed method is that it provides a fast scheme for clustering a set of points without neither a prior knowledge on the number of naturally occurring cluster in the data nor an assumption on clusters shapes. A quantitative and comparative performance assessment is carried out over the Berkeley and BuffaloXiph datasets. The results witness the efficiency of the method in terms of both classification accuracy and computational performance. These quantitative assessments reinforce the significance as well as the importance of embedding the proposed method in other intelligent systems application areas. (C) 2019 Elsevier Ltd. All rights reserved.
机译:机器学习已成为当今专家和智能系统的支柱,在那里对无人监督的方法绘制了特别关注。支持向量数据描述是解决两个主要挑战中所提出的最有趣的方法之一:缺乏地面真理标签以及数据中的异常值。众所周知,最终问题对系统性能产生了很大的影响,因为它通常会阻止并限制其泛化,因此失败。即使支持向量数据描述方法的优势,其应用于多类和大规模上下文作为计算机视觉系统,它导致的瓶颈问题是由于其运行时复杂性和单级上下文应用程序。在本文中,我们提出了一种灵感来自粒子群的运动行为的方法,并依赖于核心设定范例的使用来克服支持矢量数据描述方法的上述缺点。实际上,由于所提出的方法使用对应于内核函数和群体的运动配方的一些参数,我们在本文中展示和研究了一些确保对这些参数的动态调整的策略。所提出的方法的主要品质是它提供了一种用于聚类一组点的快速方案,而没有任何关于数据中的天然存在的群集的数量的现有知识,也不是簇形状的假设。在伯克利和水牛毒素数据集上进行了定量和比较表现评估。结果在分类准确性和计算性能方面见证了该方法的效率。这些定量评估强化了重要性以及将所提出的方法嵌入其他智能系统应用领域的重要性。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号