首页> 外文期刊>Neurocomputing >Semi-supervised subclass support vector data description for image and video classification
【24h】

Semi-supervised subclass support vector data description for image and video classification

机译:用于图像和视频分类的半监督子类支持向量数据描述

获取原文
获取原文并翻译 | 示例

摘要

AbstractIn this paper, the Semi-Supervised Subclass Support Vector Data Description is presented, a method that operates in both the supervised and the semi-supervised One-class classification case. The proposed method consists a novel extension of the standard SVDD method, by introducing two additional terms its optimization problem. These two terms correspond to expressing global and local geometric data information respectively, during the classifier optimization process. Global geometric data information is employed by minimizing the global target class variance, assuming that subclasses may have been formed within as well. In addition, by exploiting the semi-supervised learning smoothness assumption, local neighborhood information between all available (labeled and unlabeled) data is preserved, even in the supervised learning case. We show that the adoption of both terms results in a regularized feature space, where low variance directions have been emphasized, while local geometric data information have been preserved. The proposed method has been evaluated in classification problems related to face recognition, human action recognition and generic One-class classification problems, comparing favorably against related One-class classification methods in both the semi-supervised and the supervised learning cases.
机译: 摘要 在本文中,提出了半监督子类支持向量数据描述,该方法可在监督和半监督的一类分类情况下使用。所提出的方法包括对标准SVDD方法的新颖扩展,通过引入两个附加项来优化其问题。这两个术语分别对应于在分类器优化过程中表示全局和局部几何数据信息。假设子类也可能已在其中形成,则通过使全局目标类差异最小化来使用全局几何数据信息。此外,通过利用半监督学习平滑性假设,即使在监督学习的情况下,也保留了所有可用(标记和未标记)数据之间的局部邻域信息。我们表明,两个术语的采用都会导致规则化的特征空间,其中强调了低方差方向,同时保留了局部几何数据信息。该方法在涉及人脸识别,人为动作识别和通用一类分类问题的分类问题中得到了评估,在半监督和监督学习情况下均优于相关的一类分类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号