首页> 外文期刊>Expert systems with applications >Hierarchical differential evolution algorithm combined with multi-cross operation
【24h】

Hierarchical differential evolution algorithm combined with multi-cross operation

机译:分层差分演进算法与多交叉操作相结合

获取原文
获取原文并翻译 | 示例

摘要

In expert systems, complex optimization problems are always characterized by nonlinearity, nonconvexity, multi-modality, discontinuity, and high dimensionality. Although classical optimization algorithms are mature, they readily fall into a local optimum. The differential evolution (DE) algorithm has been successfully applied to solve numerous problems with expert systems. However, balancing the global and local search capabilities of the DE algorithm remains an open issue and has attracted significant research attention. Thus, a hierarchical heterogeneous DE algorithm that incorporates multi-cross operation (MCO) is proposed in this article. In the proposed algorithm, success-history-based adaptive DE (SHADE) is implemented in the bottom layer, while MCO is implemented in the top layer. The MCO search is based on the SHADE results, but its search results do not affect the bottom layer. First-order stability analyses conducted for the presented MCO showed that the individual positions are expected to converge at a fixed point in the search space. The accuracy and convergence speed of the proposed algorithm were also experimentally compared with those of eight other advanced particle swarm optimization techniques and DE variants using benchmark functions from CEC2017. The proposed algorithm yielded better solution accuracy for 30- and 50-dimensional problems than the other variants, and although it did not provide the fastest convergence for all of the functions, it ranked among the top three for the unimodal and simple multimodal functions and achieved fast convergence for the other functions. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在专家系统中,复杂的优化问题始终以非线性,非凸性,多种方式,不连续性和高维度为特征。虽然经典优化算法成熟,但它们容易进入局部最佳。差分演进(DE)算法已成功应用于解决专家系统的许多问题。但是,平衡DE算法的全局和本地搜索功能仍然是一个开放问题,并引起了显着的研究。因此,在本文中提出了一种包含多交叉操作(MCO)的分层异构DE算法。在所提出的算法中,基于成功历史的自适应DE(SHADE)在底层中实现,而MCO在顶层中实现。 MCO搜索基于阴影结果,但其搜索结果不会影响底层。对所提出的MCO进行的一阶稳定性分析表明,预期各个位置会聚在搜索空间中的固定点处。该算法的准确性和收敛速度也与其他八种其他高级粒子群优化技术和DE VARIANCE的算法进行了实验,使用来自CEC2017的基准函数。所提出的算法比其他变体产生了更好的30-和50维问题的解决方案精度,尽管它没有为所有功能提供最快的收敛,但它排名为单峰和简单的多模函数并实现的前三个。其他功能的快速收敛。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号