首页> 外文期刊>Expert Systems with Application >Hierarchical differential evolution algorithm combined with multi-cross operation
【24h】

Hierarchical differential evolution algorithm combined with multi-cross operation

机译:结合多叉运算的分层差分进化算法

获取原文
获取原文并翻译 | 示例

摘要

In expert systems, complex optimization problems are always characterized by nonlinearity, nonconvexity, multi-modality, discontinuity, and high dimensionality. Although classical optimization algorithms are mature, they readily fall into a local optimum. The differential evolution (DE) algorithm has been successfully applied to solve numerous problems with expert systems. However, balancing the global and local search capabilities of the DE algorithm remains an open issue and has attracted significant research attention. Thus, a hierarchical heterogeneous DE algorithm that incorporates multi-cross operation (MCO) is proposed in this article. In the proposed algorithm, success-history-based adaptive DE (SHADE) is implemented in the bottom layer, while MCO is implemented in the top layer. The MCO search is based on the SHADE results, but its search results do not affect the bottom layer. First-order stability analyses conducted for the presented MCO showed that the individual positions are expected to converge at a fixed point in the search space. The accuracy and convergence speed of the proposed algorithm were also experimentally compared with those of eight other advanced particle swarm optimization techniques and DE variants using benchmark functions from CEC2017. The proposed algorithm yielded better solution accuracy for 30- and 50-dimensional problems than the other variants, and although it did not provide the fastest convergence for all of the functions, it ranked among the top three for the unimodal and simple multimodal functions and achieved fast convergence for the other functions. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在专家系统中,复杂的优化问题始终以非线性,非凸性,多模态,不连续和高维为特征。尽管经典的优化算法已经成熟,但它们很容易陷入局部最优。差分进化(DE)算法已成功应用于解决专家系统中的许多问题。但是,如何平衡DE算法的全局和局部搜索功能仍然是一个悬而未决的问题,并引起了广泛的研究关注。因此,本文提出了一种包含多交叉运算(MCO)的分层异构DE算法。在提出的算法中,在底层实现基于成功历史的自适应DE(SHADE),而在顶层实现MCO。 MCO搜索基于SHADE结果,但其搜索结果不会影响底层。对提出的MCO进行的一阶稳定性分析表明,预计单个位置会收敛于搜索空间中的固定点。使用CEC2017的基准函数,还将所提出算法的准确性和收敛速度与其他八种先进粒子群优化技术和DE变体进行了实验比较。所提出的算法与其他变体相比,在30维和50维问题上的求解精度更高,尽管它不能为所有函数提供最快的收敛速度,但它在单峰函数和简单多峰函数中均位居前三名,并且实现了其他功能的快速收敛。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号