首页> 外文期刊>Expert systems with applications >A novel trend based SAX reduction technique for time series
【24h】

A novel trend based SAX reduction technique for time series

机译:基于趋势的时间序列趋势降低技术

获取原文
获取原文并翻译 | 示例

摘要

We propose in this paper a novel trend based SAX reduction technique called SAX_CP, which captures the trends in a time series based on abrupt change points and on data variation. SAX_CP discriminates between time series by adopting a variable segment size that depends on the time series' change points. Furthermore, SAX_CP is endowed with a new distance that takes into account the possible correlations between time series. The proposed distance enjoys interesting features such as lower bounding the Euclidean distance and better Tightness of Lower Bound (TLB) compared to the so far published SAX based distances. We conduct comprehensive experiments on classification based on SAX_CP and other related SAX based reduction techniques. The results show that SAX_CP enjoys better classification results compared to these techniques with a small reduction cost. (C) 2019 Elsevier Ltd. All rights reserved.
机译:我们在本文中提出了一种新颖的基于趋势的SAXAXACK技术,称为SAX_CP,其基于突然变化点和数据变化来捕获时间序列中的趋势。 SAX_CP通过采用取决于时间序列的变化点的变量段大小来区分时间序列之间的判别。此外,SAX_CP赋予了新的距离,以考虑时间序列之间可能的相关性。所提出的距离享有有趣的特征,例如,与基于SAX的距离相比,欧几里德距离的欧几里德距离和更好的下限(TLB)的紧密性。基于SAX_CP和其他相关萨克斯的减少技术进行了全面的分类实验。结果表明,与这些技术相比,SAX_CP享有更好的分类结果,具有较小的成本。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号